Parallel and Distributed Optimization
with Gurobi Optimizer

,f G' rg | br Cax I 1T 3 h 1155

GUROBI

OPTIMIZATION

Our Presenter Eif A

Dr. Greg Glockner
Director of Engineering, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

Parallel & Distributed
Optimization

FITHS ML

GUROBI

IIIIIIIIIIII

,

Terminology for this presentation KiE4t 23

Parallel computation 3#{Ti+&

» One computer —& #1235
- Multiple processor cores % %72

- 1 or more processor sockets %
CPU

» Part of Gurobi throughout our
history 5Gurobi f8x
> MIP branch-and-cut
- Barrier for LP, QP and SOCP

- Concurrent optimization

S—

Distributed computation 2#it+E

4

Multiple computers, linked via
a network BIEMNHN % & EELHLER

Relatively new feature

Each independent computer
can do parallel computation!

BoMIH R UHITHITITE

© 2015 Gurobi Optimization GUROBI

OPTIMIZATION

Parallel algorithms and hardware F{T&EfMEH

» Parallel algorithms must be designed around hardware & & B &8 415

Tt
> What work should be done in parallel ¥{7&8%45T
> How much communication is required B #Hi&R

- How long will communication take i@}

» Goal: Make best use of available processor cores & RILFIFHEFEHSE
%

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Multi-Core Hardware Z ;&

Multi-core CPU

ﬁ

Computer

Bottleneck

LR

6 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed Computing 9%+ &

Multi-core CPU

ﬁ

Computer

Bottleneck

LR

Huge bottleneck
Network B K#R 30

! © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

How Slow Is Communication? Bl ZI2?

Multi-core CPU

ﬁ

Computer

50GB/s
60ns latency

100MB/s
Network 100us latency

A

» Network is ~1000X slower than memory M#&LtLN7EIE210001S
- Faster on a supercomputer, but still relatively slow

8 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed Algorithms in Gurobi 6.0 Gurobinf& %

» 3 distributed algorithms in version 6.0 =M52#HE%
- Distributed tuning % iEML
- Distributed concurrent 9% 3%

- LP (new in 6.0)
- MIP

- Distributed MIP (new in 6.0) 5% MIP

9 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed Tuning %% iE1ft

» Tuning: 1B
> MIP has lots of parameters
> Tuning performs test runs to find better settings

» Independent solves are obvious candidate for parallelism
BMMILKEEEHFITIHE

» Distributed tuning a clear win %A KREAR
> 10X faster on 10 machines

» Hard to go back once you have tried it

10 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Concurrent Optimization

HF & MAE

GUROBI

IIIIIIIIIIII

Concurrent Optimization 3 & {1t

Run different algorithms/strategies on different machines/cores
> First one that finishes wins NE%BIZTARE L, EELERSE
Nearly ideal for distributed optimization EX &Rk

- Communication:

- Send model to each machine &8 &£ F|&/H58
- Winner sends solution back &7 EZE A O%ZLR

Concurrent LP: F4LP
- Different algorithms: REX#EHEFHFLZANE

Primal simplex/dual simplex/barrier

Concurrent MIP: F#F % MIP

- Different strategies R[E K

- Default: vary the seed used to break ties ZRIA\FEFEAFhF
Easy to customize via concurrent environments A& 1k

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

MIPLIB 2010 Testset izt £

ol

» MIPLIB 2010 test set...

> Set of 361 mixed-integer programming models
> Collected by academic/industrial committee

» MIPLIB 2010 benchmark test set...

> Subset of the full set - 87 of the 361 models
- Those that were solvable by 2010 codes
- (Solvable set now includes 206 of the 361 models)

» Notes: FIEEMErENIXETESE
- Definitely not intended as a high-performance computing test set
- More than 2/3 solve in less than 100s
- 8 models solve at the root node
- ~1/3 solve in fewer than 1000 nodes

13 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

14

Distributed Concurrent MIP 9#%H =34 MIP

» Results on MIPLIB benchmark set (>1.00X means concurrent MIP is
faster):

> 4 machines vs 1 machine:

i o e

1.26X

>100s 17 3 1.50X

> 16 machines vs 1 machine:

1.40X
>100s 26 1 2.00X

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Customizing Concurrent & F{t ¥ % %0

» Easy to choose your own settings:
- Example - 2 concurrent MIP solves:

- Aggressive cuts on one machine —ӑ% FE0H) H RIS
- Aggressive heuristics on second machine B4 —& V28K FRuH

HEAT

- Java example
GRBEnv env0 = model.getConcurrentEnv(0);
GRBEnv envl = model.getConcurrentEnv(1l);
env(0.set (GRB.IntParam.Cuts, 2);
envl.set(GRB.DoubleParam.Heuristics, 0.2);
model.optimize();
model.discardConcurrentEnvs();

- Also supported in C++, .NET, Python and C

15 © 2015 Gurobi Optimization GUROBI

OPTIMIZATION

Distributed MIP
A= MIP

GUROBI

IIIIIIIIIIII

Distributed MIP Architecture 4= MIP Z213

» Manager-worker paradigm EEH-L/EH ER

» Manager EIE#
- Send model to all workers
> Track dual bound and worker node counts

- Rebalance search tree to put useful load on all
workers

- Distribute feasible solutions

» Workers T{E#
> Solve MIP nodes
- Report status and feasible solutions

» Synchronized deterministically

17 © 2015 Gurobi Optimization GUROBI

OPTIMIZATION

Distributed MIP Phases 9%z MIP [} E%

» Racing ramp-up phase Fip &R
> Distributed concurrent MIP

Solve same problem individually on each worker, using different parameter
settings

Stop when problem is solved or “enough” nodes are explored
Choose a “winner” - worker that made the most progress

» Main phase &
- Discard all worker trees except the winner's

> Collect active nodes from winner, distribute them among now idle workers
- Periodically synchronize to rebalance load

18 © 2015 Gurobi Optimization GUROBI

OPTIMIZATION

Bad Cases for Distributed MIP %= MIP F5&HF

» Easy problems g2 [o]gn
- Why bother with heavy machinery?

» Small search trees #Z#i A/

> Nothing to gain from parallelism

» Unbalanced search trees # & H4 ,&gﬁ{
> Most nodes sent to workers will be solved immediately f»“”
and worker will become idle again o
e
*zéﬁfﬁf 7
K;j}ﬁ@f)jﬁf f x neos3" solved with SIP (predecessor of SCIP)

19 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Good Cases for Distributed MIP 27zt MIP &4

» Large search trees g KR
» Well-balanced search trees 9 ¥apiE R

> Many nodes in frontier lead to large sub-trees

"vpm2" solved with SIP (predecessor of SCIP)
Achterberg, Koch, Martin: "Branching Rules Revisited" (2004)

20 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Performance

TERE

GUROBI

IIIIIIIIIIII

Three Views of 16 Cores =FhF|FH16 %

» Consider three different tests, all using 16 cores:
> On a 16-core machine:

Run the standard parallel code on all 16 cores —&16&ZiIz{TH LR
Run the distributed code on four 4-core subsets 9 pi471N4%, EZTH ARG

> On four 4-way machines:
Run the distributed code 4441138, 55844, ETHOHRNRE

» Which gives the best results? BN R&ZITF?

22 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Parallel MIP on 1 Machine —.35164%3+4T

» Use one 16-core machine:

Multi-core CPU Multi-core CPU

OO00O OO00O
OO00O OO00O

23 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed MIP on 1 machine —.5884%4 94X

» Treat one 16-core machine as four 4-core machines:

Multi-core CPU Multi-core CPU

OO0
OO00

24 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed MIP on 4 machines 45 #l3 24

» Use four 4-core machines

Multi-core Multi-core Multi-core Multi-core
CPU CPU CPU CPU

OO OO OO OO
OO OO OO OO

Network

25 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Performance Results 14gEZ R

» Using one 16-core machine (MIPLIB 2010, baseline is 4-core run on
the same machine)...

One 16-core 1.57X 2.00X
Four 4-core 1.26X 1.82X

» Better to run one-machine algorithm on 16 cores than treat the
machine as four 4-core machines F—&#H216#&%EHEMA Ltk 4*4
pa i TE=N 5

- Degradation isn't large, though

26 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Performance Results t4gEz R

» Comparing one 16-core machine against four 4-core machines
(MIPLIB 2010, baseline is single-machine, 4-core run)...

One 16-core machine 1.57X 2.00X
Four 4-core machines 1.43X 2.09X

» Given a choice... X
- Comparable mean speedups jnEMaE+RIR

- Other factors... Eft[A=
- Cost: four 4-core machines are much cheaper {7
- Admin: more work to admin 4 machines EIEEZLXE

27 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

28

Distributed Algorithms in 6.0 #HXE %

» MIPLIB 2010 benchmark set
> Intel Xeon E3-1240v3 (4-core) CPU
- Compare against 'standard’' code on 1 machine

© 2015 Gurobi Optimization

Machines : :

2 40 16 1.14X 20 7 1.27X

4 50 17 1.43X 25 2 2.09X

8 53 19 1.53X 25 2 2.87X

16 52 25 1.58X 25 3 3.15X
GUROBI

OPTIMIZATION

Some Big Wins —iZERFA

» Model seymour
- Hard set covering model from MIPLIB 2010
> 4944 constraints, 1372 (binary) variables, 33K non-zeroes

v i | e | st
476,642 9,267s

16 1,314,062 1,015s 9.1X

32 1,321,048 633s 14.6X

29 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Distributed Concurrent Versus Distributed MIP

SmAFL xitk 53 MIP

» MIPLIB 2010 benchmark set (versus 1 machine run):

o >1s
4 1.26X 1.43X
16 1.40X 1.58X
> >100s
4 1.50X 2.09X
16 2.00X 3.15X

30 © 2015 Gurobi Optimization GUROBI
OPTIMIZATION

31

Gurobi Distributed MIP %= MIP

» Makes huge improvements in performance possible T ZEIZF T FEIHE

» Mean performance improvements are significant but not huge T#8E{=
FEZE BFREX
- Some models get big speedups, but many get none —iZRI U B &
> Much better than distributed concurrent tt4ofXH L ELF
- As effective as adding more cores to one box tHYF A — 12218 MNIZ%EL

» Effectively exploiting parallelism remains: F{Ti+&E{HA
- A difficult problem H®EZH
- A focus at Gurobi Gurobi XF&E S

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Mechanics

BRIEAE

GUROBI

IIIIIIIIIIII

Gurobi Remote Services Gurobi T2k 5%

—

» Install Gurobi Remote Services on worker machines & T{EHl LR
iz AR 55
> No Gurobi license required on workers T{E#l_ETLFE¥FA]
> Machine listens for Distributed Worker requests 15M1&k

» Set a few parameters on manager ZEEEN LIZESH
° ConcurrentJobs=4
°© WorkerPool=machinel,machine?,machine3, machinei4
> No other code changes required

» Manager must be licensed to use distributed algorithms EIE#1FE
AR EELFA
> Gurobi Distributed Add-On
Enables up to 100 workers &% 1004 T1EH

33 © 2015 Gurobi Optimization GUROBI

OPTIMIZATION

34

Integral Part of Product 7= GMIZERE %

» Built on top of Gurobi Compute Server ZFGurobi J+HEiRSE 28 IEE
> Only 1500 lines of C code specific to concurrent/distributed MIP

» Built into the product THRFHEE=E
- No special binaries involved

» Bottom line: A%, LIEH MIPEE KEM, BLTIRA

> Changes to MIP solver automatically apply to distributed code too
Performance gains in regular MIP also benefit distributed MIP

> Distributed MIP will evolve with regular MIP

© 2015 Gurobi Optimization

GUROBI

OPTIMIZATION

Footnote: GPGPU computing GPU j1&

—

» GPGPU: General-purpose computing on Graphics Processing Units
- Massively parallel for simple computation H{7{EEt+E
- Heavily marketed for parallel tasks H{T{E554ME

» Currently, GPUs are not well-suited for solvers like Gurobi GPU A~
&S Gurobi REAMIEES
- For LP, sparse linear algebra does not parallelize to hundreds of GPUs

- For MIP, each tree node requires very different calculations, but GPU SIMD
computations are designed for identical calculations on different data

» General-purpose CPUs continue to add parallel cores, which benefit
Gurobi Optimizer @A CPU #&i0#%k, %4 F Gurobi

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

Licensing iFA]

» Commercial & B
> Not included - must purchase the distributed option
- Ask your sales representative for benchmarks or pricing

» Academic FR
- Named-user: not included in licenses from Gurobi website
- Site license: not currently supported

> If interested, your network administrator must contact Gurobi support to
request a single-machine, distributed license

© 2015 Gurobi Optimization GUROBI
OPTIMIZATION

