

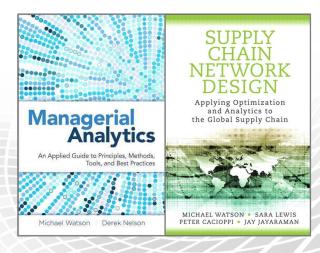
Welcome to the Webinar

Part II: Combining Optimization with Machine Learning for Better Decisions

Speaker Introduction

- Dr. Michael Watson
 - Managing Partner at Opex Analytics
 - Recognized leader in analytics and supply chain optimization
 - Michael was an early employee and leader at LogicTools
 - While at IBM, he was the worldwide business leader for network design, inventory and routing solutions
 - Co-author of "Managerial Analytics" and "Supply Chain Network Design"
 - Adjunct professor at Northwestern University teaching graduate level courses within the Master in Engineering Management and the Master of Science in Analytics programs

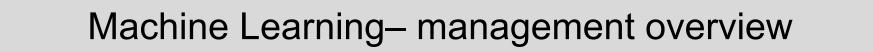
GUROBI



Speaker Introduction

- Sam Hillis
 - Sr. Data Scientist at Opex Analytics
 - Areas of expertise include deep learning, sensor analytics, forecasting and big data
 - Earned a Bachelor of Science in Mathematics from the University of Illinois and a Master of Science in Analytics from Northwestern University
 - Sam's work at Opex has resulted in development of customized solutions predicting hourly changes in energy pricing, and frameworks for the real-time visualization and analysis of machine sensor data

Topics we plan to cover today



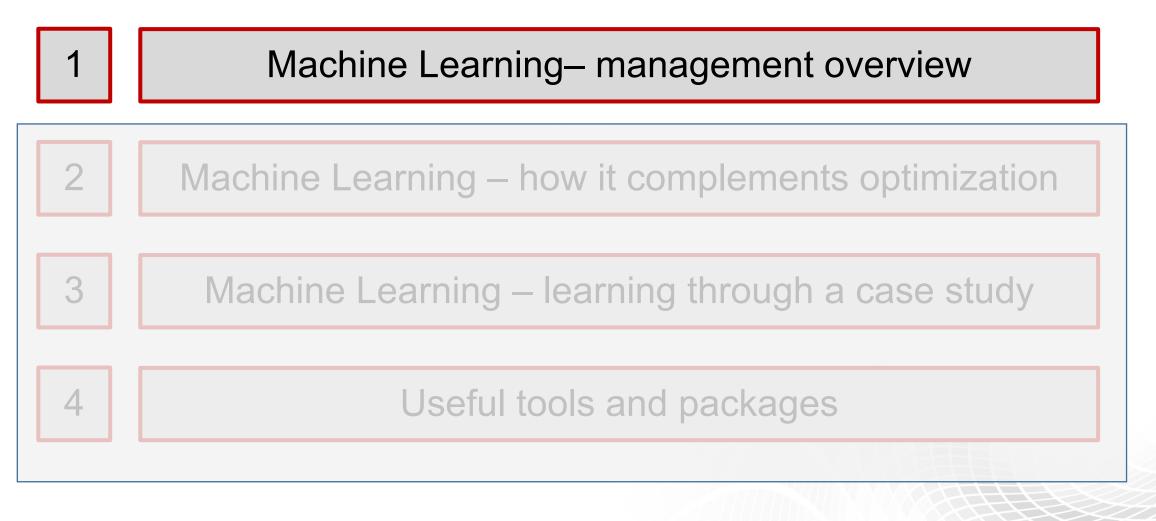
1

Machine Learning – how it complements optimization

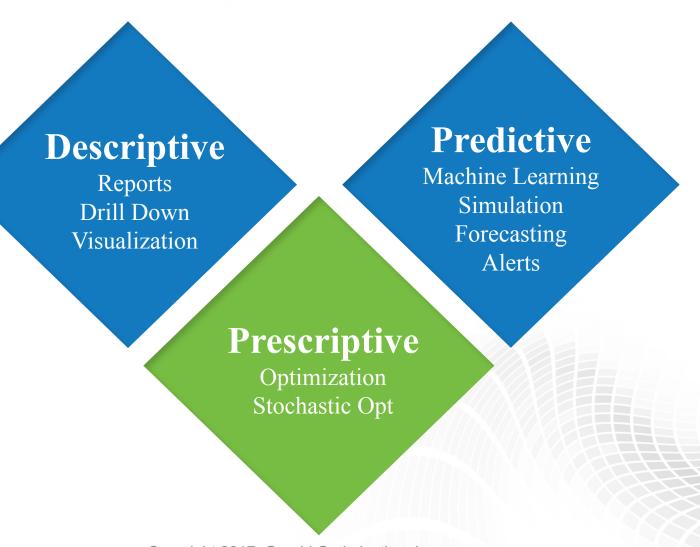
4

Machine Learning – learning through a case study

Useful tools and packages



Where Machine Learning Fits in Analytics



Copyright 2017, Gurobi Optimization, Inc.

GUROBI OPTIMIZATION

opexanalytics

What is Possible with Machine Learning?

Ay Goog	le Translate
Translate	Turn off instant translation
English Spanish French Detect language -	English Spanish Hindi - Translate
where is the grocery store?	K Donde esta el supermercado
 ● ● ■ ● 27/500 	₀ ☆ ⊡ •) < /

Self Driving Cars

Why can machine learning algorithms do better

Linear Regression of 0/1 Response

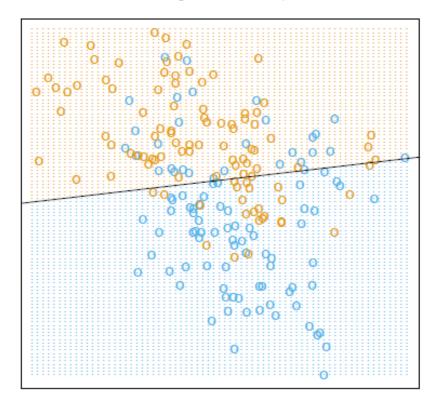


FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

Simple Regression

Source: https://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Why can machine learning algorithms do better

15-Nearest Neighbor Classifier

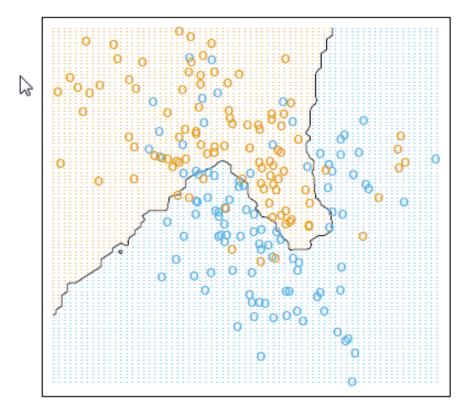


FIGURE 2.2. The same classification example in two dimensions as in Figure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence chosen by majority vote amongst the 15-nearest neighbors.

Machine Learning can tease out patterns

Source: https://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

What do we mean by "Learning?"

How do I find bad potato chips?

Rules Based (not learning):

Build equations of all cases of what a bad chip looks like

GUROBI

opexanalytics

Problem: Too many rules, takes too long, I still miss a lot; not flexible

Learning (as in machine learning)

Provide a database of pictures of chips with a label of "good" or "bad." The algorithm, not a person, figures out the rules– that is the learning.

How to classify Machine Learning problems

Supervised Learning

Classification

(non-quantitative data)

Regression (quantitative data)

Unsupervised Learning

Clustering (non-quantitative data)

Density Estimation (quantitative data) **Supervised Learning** You have some labels for the data (you know what category it is in, you know what results it led to)

Unsupervised Learning The data does not have labels on it

Learning Taking a set of data and building a prediction model with it

opexanalytics

Unsupervised learning can uncover new insights

This is how we got "soccer moms"

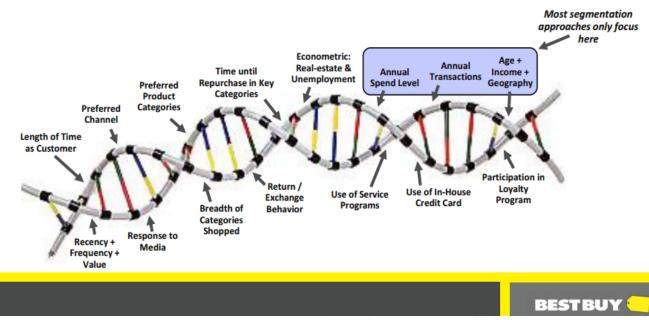
Best Buy and Unsupervised learning

Stop Guessing: Analytics Can Tell You Who Your Customers Are

- Start with 30-40 modeled variables "Feature Vectors"
- Each feature vector is like a gene, which describes a facet, or set of customer behavior traits
- 8-15 Feature Vectors are used to define Action Clusters, all 40 can be used to create sub-groups

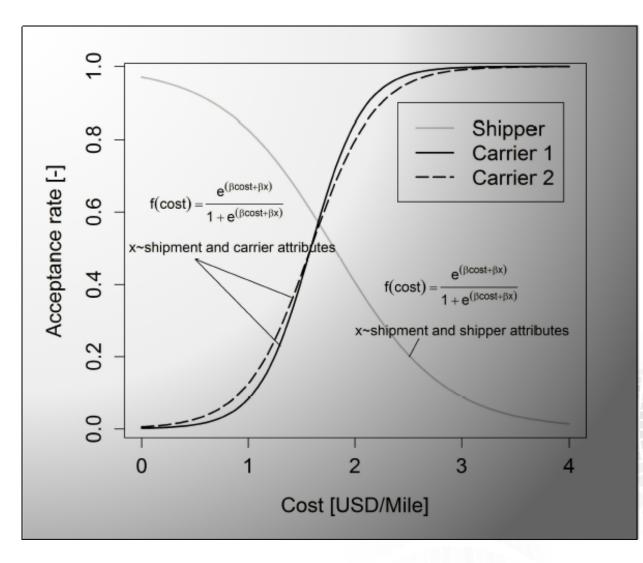
5-dimensional typical segmentation ≈ 16,000 views

- 12-dimensional Action Clusters 30 Feature Vectors



Predicting Market Sales with External Data and Feature Engineering

Predicting Prices in the trucking market



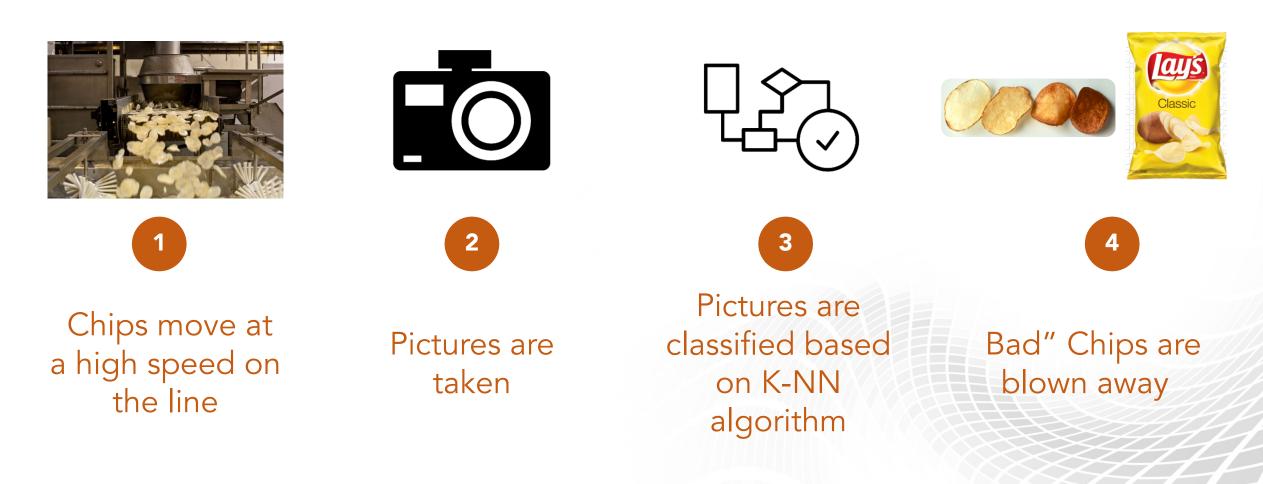
Source: http://opexanalytics.com/labs/pricing-logistics-services/

You can accelerate machine learning with more data

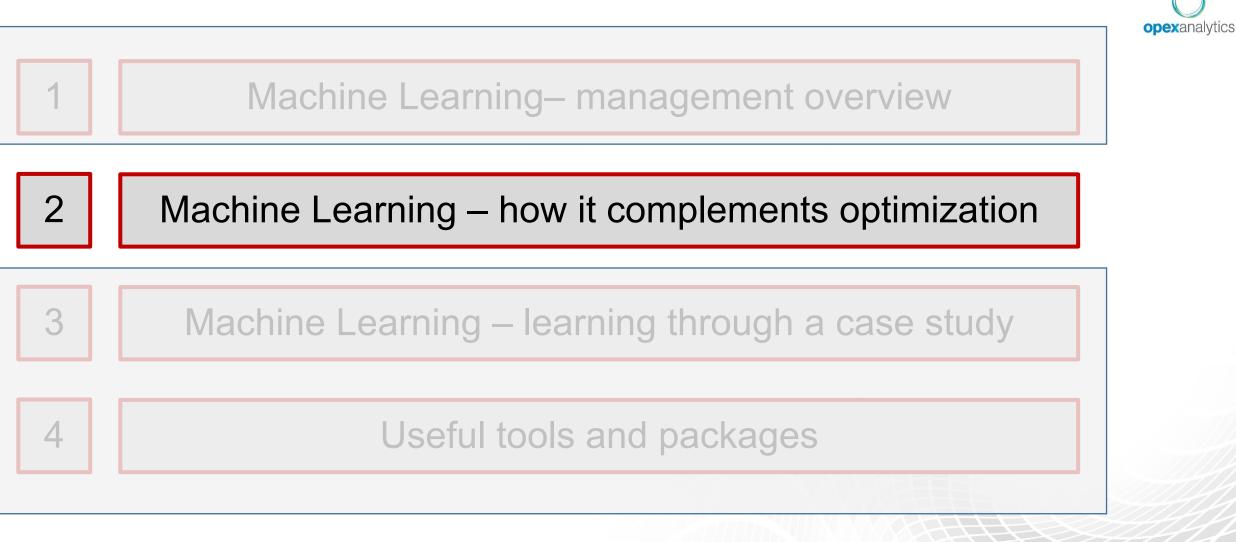
The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

Using predictive models to find bad potato chips

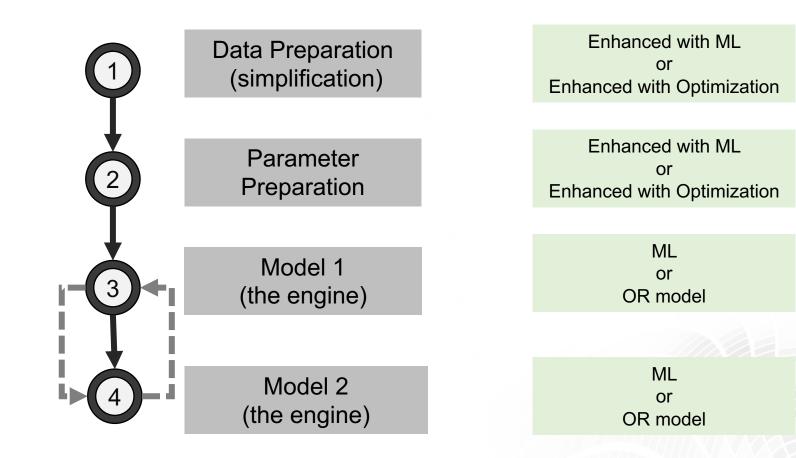


Source: <u>http://www.econtalk.org/archives/2011/08/odonohoe_on_pot.html</u> (at the 16:47 mark)

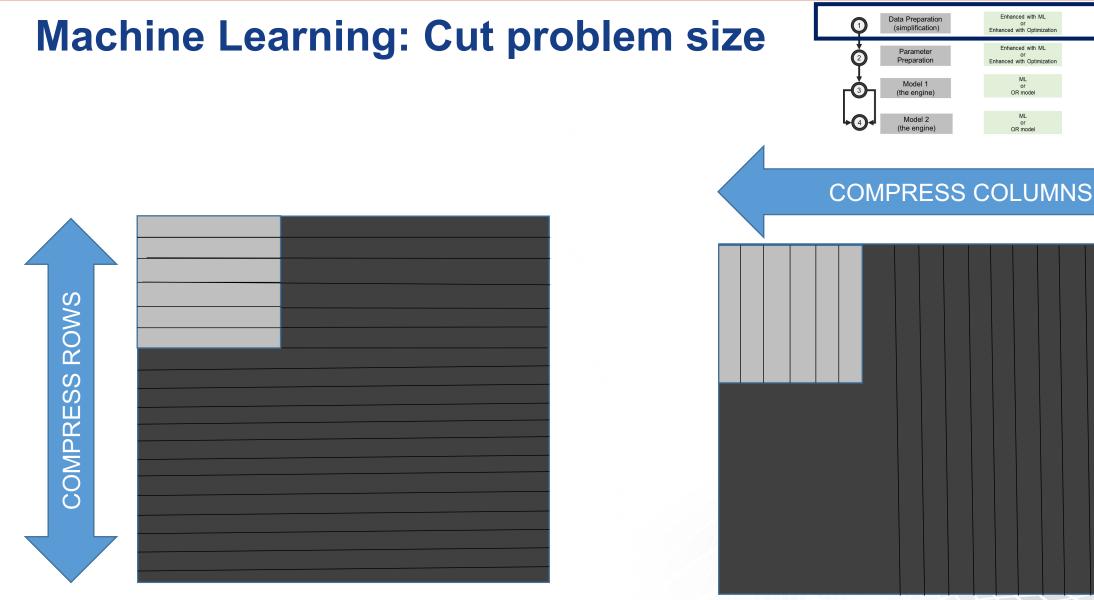


GUROBI

The typical modeling framework



Optimization experts may already be familiar with Multi Stage Optimization problems



Clustering (K-means, hierarchical, etc.)

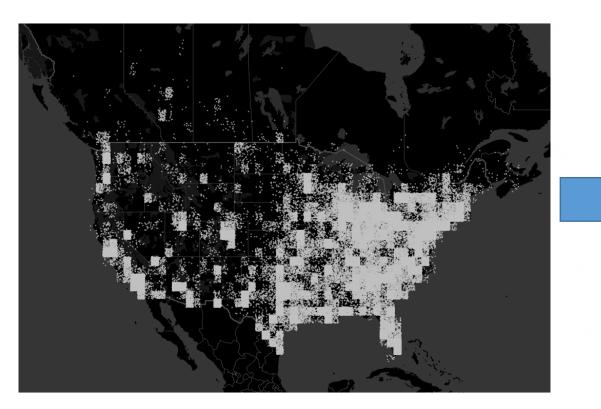
Factor Analysis (Principal Component Analysis, etc.) Copyright 2017, Gurobi Optimization, Inc.

GUROBI

OPTIMIZATION

opexanalytics

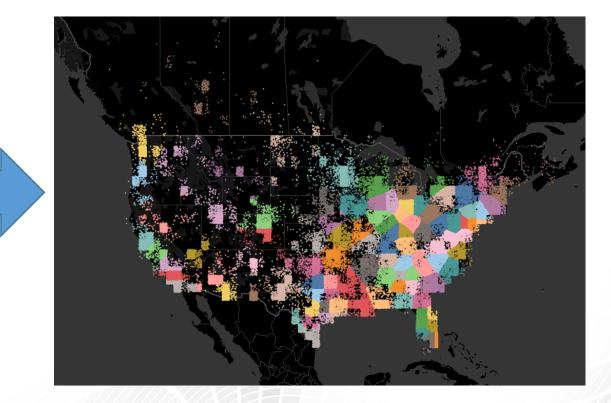
Machine Learning: Cut problem size (clustering)



Option 1: Optimization Model

Pros: Exact Answer

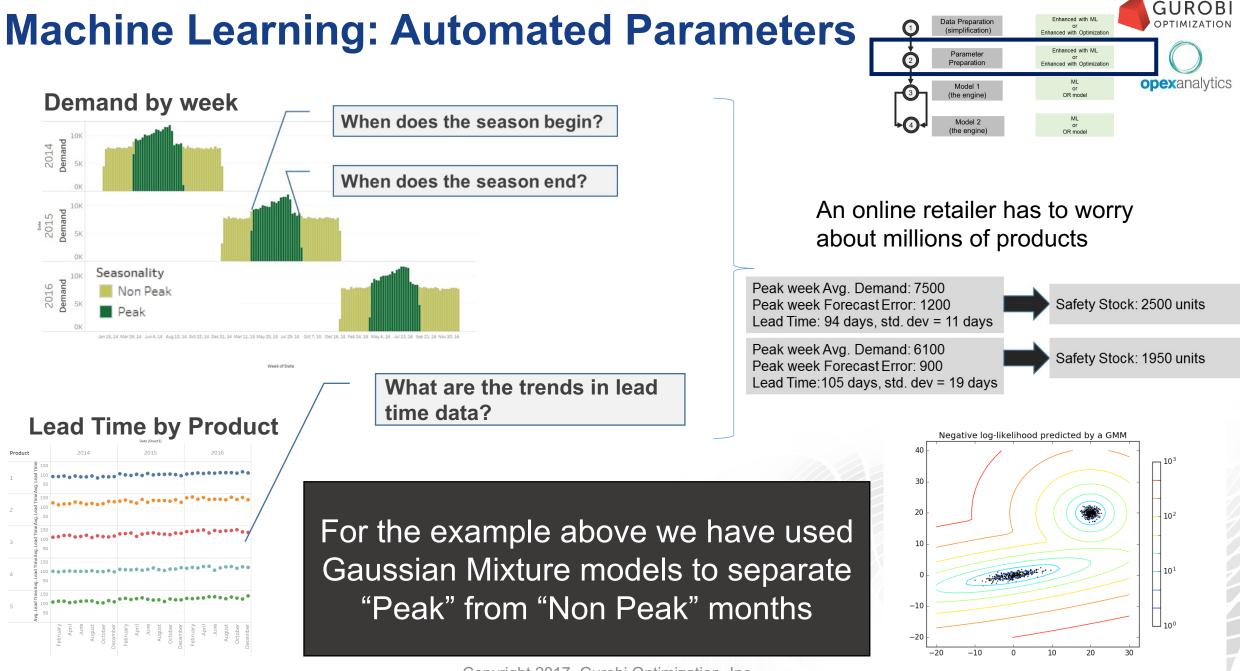
Cons: Single feature



Option 2: Unsupervised Learning Model

Pros: Fast, Multiple features

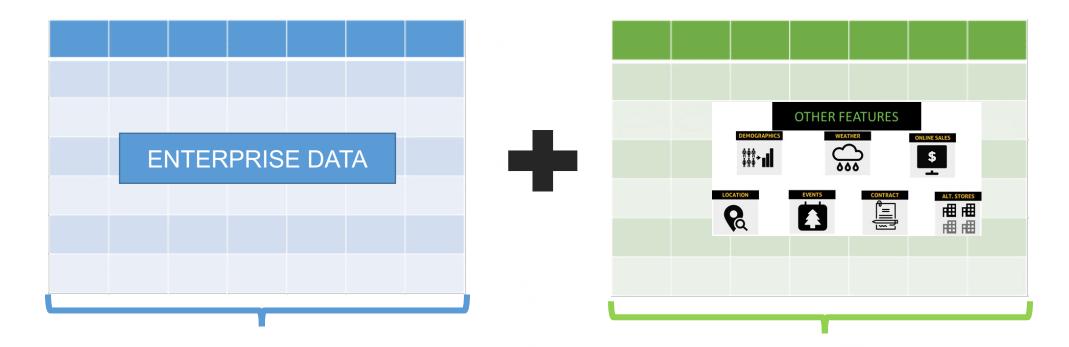
Cons: May not be 'optimal'



Copyright 2017, Gurobi Optimization, Inc.

Source: http://scikit-learn.org/stable/auto examples/mixture/plot gmm pdf.html

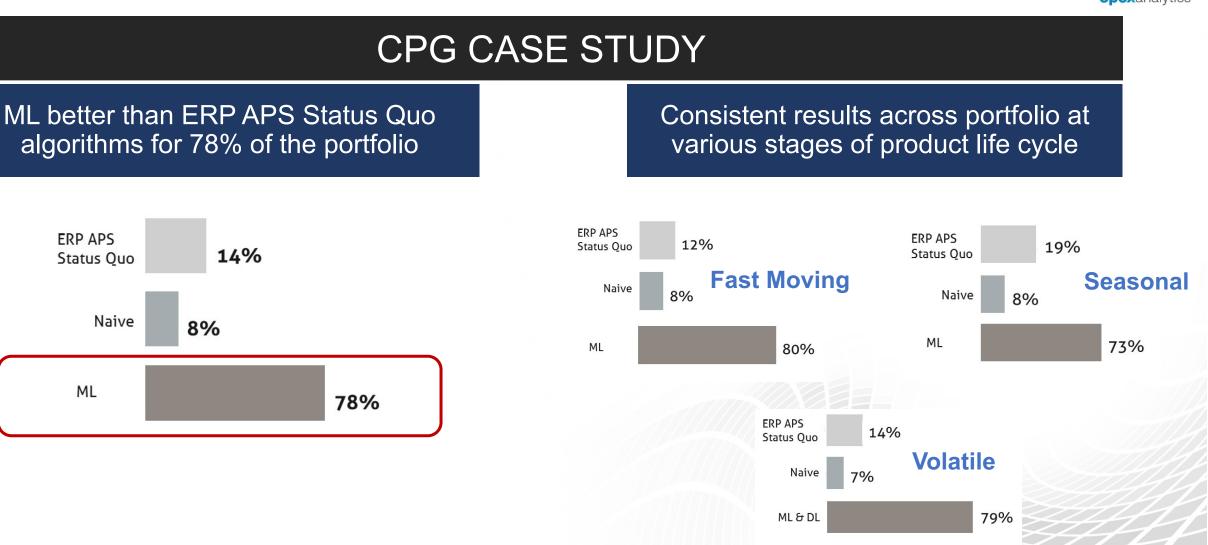
Machine Learning: Forecasting (to feed Optimization)

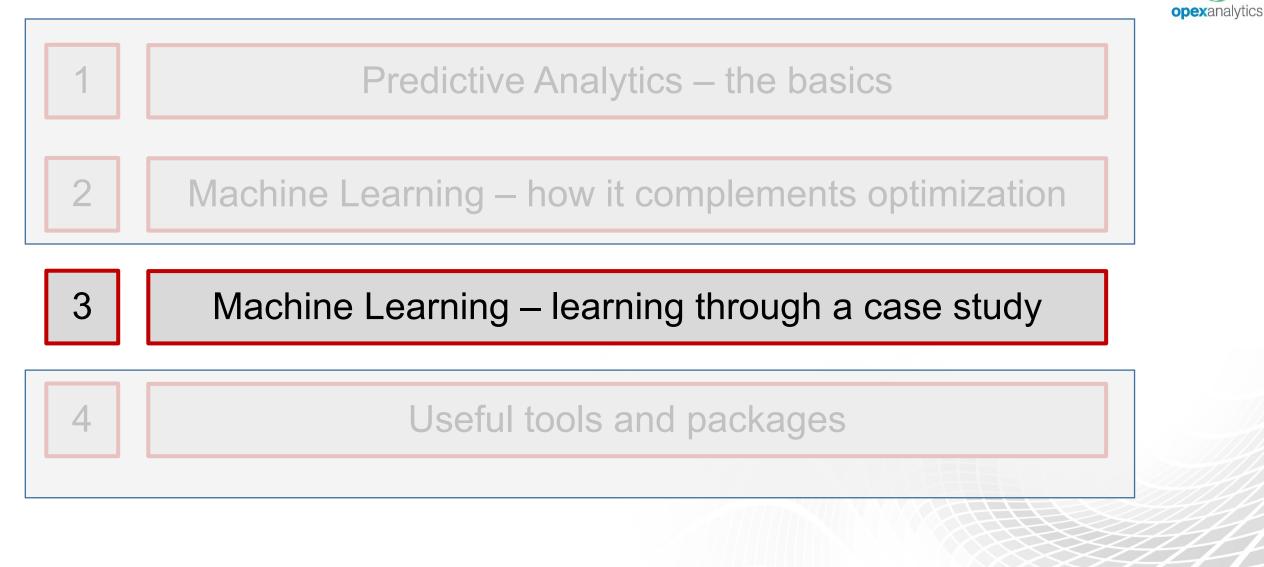


Generally successful techniques

- 1. Ensemble
- 2. Random Forest
- 3. SVM

Machine Learning: Forecasting (to feed Optimization)





Case Study – Set up

Non asset based trucking company

Objective: Use past wins to predict competitive trucking rates on lanes nationwide in the US

1000s of lanes in the country

Agents are responsible for quoting customers

Historic data available only on booked lanes The predicted rates provides agents a guidance

Case Study – Some of the feature 'families'

FLOW Inflow/Outflow Ratio mattered

CALENDAR

Did not matter

RATE

Did not matter

LOAD

DISTANCE

Inflow/Outflow Ratio mattered

Copyright 2017, Gurobi Optimization, Inc.

Case Study – Modeling Steps

1. Aggregate the locations to manageable 'markets'	2. Calculate Features for Machine Learning	3. Dimensionality Reduction of Features	4. Build & validate predictive model for baseline rates using machine learning	5. Built Network model to calibrate baseline rates for network imbalances
Approaches:OptimizationClustering		Approaches:PrincipalComponentAnalysis	Approaches:Random ForestEnsemble	Approach: Network model (Linear Programming)
	NON ASSE	T COMPANY		ASSET COMPANY

0. Prepare data for modeling (distances, etc.)

GUROBI OPTIMIZATION

Case Study – Projection

Haversine calculation ("great circle distance") is slow, use ECEF projection instead

```
import numpy as np
# "borrowed" from https://stackoverflow.com/questions/10473852/convert-latitude-and-longitude-to-point-in-3d-space
def LLHtoECEF(lat, lon, alt):
  rad = 6378137.0 # Radius of the Earth (in meters)
  f = 1.0/298.257223563 # Flattening factor WGS84 Model
  cosLat = np.cos(lat)
  sinLat = np.sin(lat)
  FF = (1.0-f)**2
  C = 1/np.sqrt(cosLat**2 + FF * sinLat**2)
  S = C * FF
  x = (rad * C + alt)*cosLat * np.cos(lon)
  y = (rad * C + alt)*cosLat * np.sin(lon)
  z = (rad * S + alt)*sinLat
  return (x, y, z)
```

GUROBI

opexanalytics

Case Study – Load Data

Load data

import pandas as pd cluster_df = pd.read_csv('sample/cluster_input.csv') cluster_df.head()

	FB_NUMBER	DATE_ID	DLAT	DLON
0	0	627	33.325080	-87.917297
1	3	627	40.738153	-84.030005
2	6	627	27.477675	-99.634112
3	11	627	38.863257	-85.634347
4	17	627	41.640130	-82.619150

Case Study – Apply Projections

Apply conversion; take note of how zip and apply are used

```
# perform ECEF conversion; don't forget to convert degrees to radians!!
cluster_df['x'], cluster_df['y'], cluster_df['z'] = zip(*cluster_df.apply(
    lambda x: LLHtoECEF(np.radians(x['DLAT']), np.radians(x['DLON']), 0.0), axis=1))
```

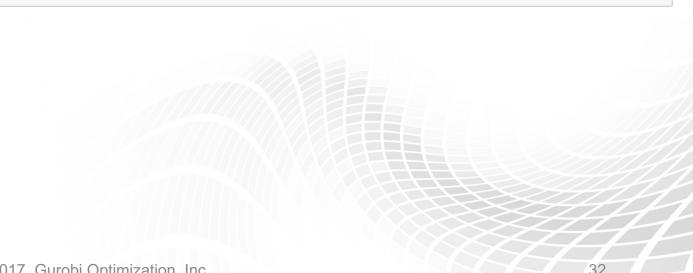
cluster_df.head()

	FB_NUMBER	DATE_ID	DLAT	DLON	x	У	z
0	0	627	33.325080	-87.917297	193875.702983	-5331228.727822	3484140.028965
1	3	627	40.738153	-84.030005	503357.190838	-4813370.318073	4140433.892498
2	6	627	27.477675	-99.634112	-947678.740954	-5582797.415327	2925275.736678
3	11	627	38.863257	-85.634347	378541.136700	-4958438.142641	3980508.233052
4	17	627	41.640130	-82.619150	613242.986358	-4734097.380054	4215816.035410

Case Study – Clustering

Load KMeans modeling object and create model

load clustering function from sklearn.cluster import KMeans # create model object with 100 centroids model = KMeans(n_clusters=100, n_init=10, n_jobs=-1)



Case Study – Clustering (continued)

Fit model to x-y-z coordinates

```
# fit model to ECEF coordinates
model.fit(cluster_df[['x','y','z']])
# add cluster to df
cluster_df['cluster'] = model.predict(cluster_df[['x','y','z']])
cluster_df.head()
```

	FB_NUMBER	DATE_ID	DLAT	DLON	x	У	z	cluster
0	0	627	33.325080	-87.917297	193875.702983	-5331228.727822	3484140.028965	94
1	3	627	40.738153	-84.030005	503357.190838	-4813370.318073	4140433.892498	43
2	6	627	27.477675	-99.634112	-947678.740954	-5582797.415327	2925275.736678	18
3	11	627	38.863257	-85.634347	378541.136700	-4958438.142641	3980508.233052	83
4	17	627	41.640130	-82.619150	613242.986358	-4734097.380054	4215816.035410	43

GUROBI

OPTIMIZATION

opexanalytics

Case Study – (Alternate) MIP Approach

 $Minimize \quad \sum_{i} \sum_{j} (dist_{ij} * d_j * Y_{ij})$

Minimize weighted(by demand) average distance

subject to

$\sum_{i} Xi = P \forall i$	Maximum of P open facilities
$\sum_{i} Yij = 1 \forall j$	Ensure every customer is served (and by one source)
$Yij <= Xi \forall i, j$	Customer can be served by a facility i only if facility is open
$Yij \in 0, 1 \forall i, j$	Xi = 1 if facility open, $Yij = 1$ if customer j is served by facility i
$Xi \in 0, 1 \forall i$	$x_i - 1$ if facture open, $x_i - 1$ if customer f is served by facture i

Source: book, Supply Chain Network Design

m = Model()

```
#number of required centers
n = 100
```

```
#binary variable for open/close
x = m.addVars(ll, vtype = GRB.BINARY, name = 'x')
```

#binary variable for assigning location to an open center
y = m.addVars(11, 11, vtype = GRB.BINARY, name = 'y')

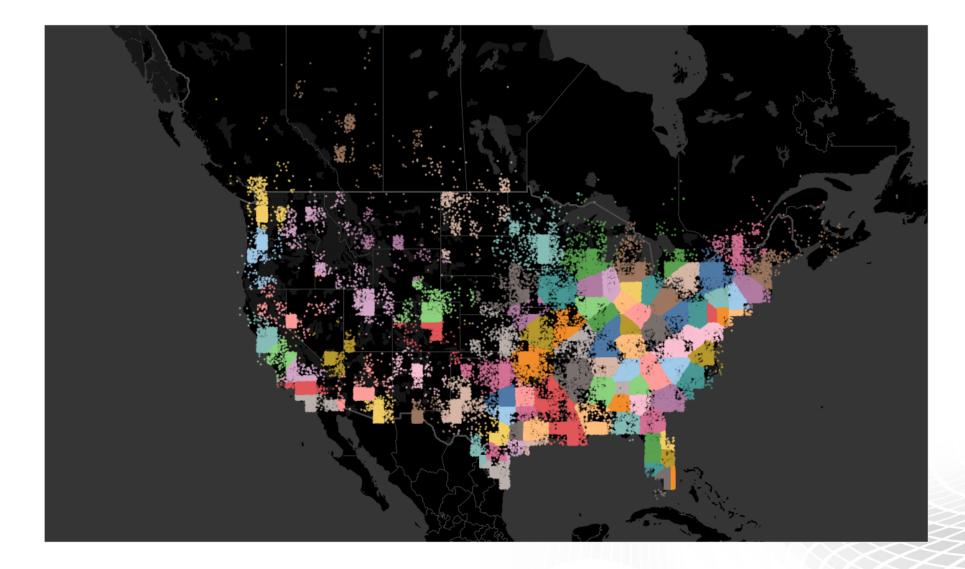
#adding constraints

```
m.addConstrs((y[i,j] <= x[i] for i in l1 for j in l1), name = "cons_assign_to_open")
m.addConstrs((quicksum(y[i,j] for i in l1) == 1 for j in l1), name = "cons_one_source")
m.addConstr((quicksum(x[i] for i in l1) == n), name = "required_centers")
m.setObjective(quicksum(distance_data[i,j]*y[i,j]*demand_data.loc[j]['demand'] for i in l1 for j in l1) )
m.update()</pre>
```

#optimize m.optimize()

Copyright 2017, Gurobi Optimization, Inc.

Case Study – Segmentation Results



Case Study – Feature Engineering

Create feature tracking DataFrame

```
# master dataframe for tracking features
feat_master = cluster_df[['FB_NUMBER']].reset_index(drop=True)
feat_master.head()
```

FB_NUMBER

0	0
1	3
2	6
3	11
4	17

To get a count of the number of loads ending in a cluster in the last 15 days, begin by merging dataset on itself

```
# subset to just fb #'s, dates, and clusters
feat_df = cluster_df[['FB_NUMBER','DATE_ID','cluster']]
# merge dataframe on itself by cluster
feat_df = feat_df.merge(feat_df.rename(columns={'FB_NUMBER':'FB_NUMBER2','DATE_ID':'DATE_ID2'}), on='cluster')
feat_df.head()
```

FB_NUMBER DATE_ID cluster FB_NUMBER2 DATE_ID2

0	0	627	94	0	627
1	0	627	94	3700	626
2	0	627	94	3750	626
3	0	627	94	4218	627
4	0	627	94	4356	627

GUROBI

Filter to get relevant date range

subset to 15 days before

feat_df = feat_df[(feat_df['DATE_ID']>feat_df['DATE_ID2']) & (feat_df['DATE_ID']-feat_df['DATE_ID2']<=15)]
feat_df.head()</pre>

FB_NUMBER DATE_ID	cluster	FB_NUMBER2	DATE_ID2
-------------------	---------	------------	----------

1	0	627	94	3700	626
2	0	627	94	3750	626
3325	4218	627	94	3700	626
3326	4218	627	94	3750	626
4433	4356	627	94	3700	626

Group by freight bill and get total count

```
# aggregate by fb and count loads ending in the same cluster in the last 15 days
feat_df = feat_df[['FB_NUMBER','FB_NUMBER2']].groupby('FB_NUMBER', as_index=False).count()
feat_df.rename(columns={'FB_NUMBER2':'LOADS_END15'}, inplace=True)
feat_df.head()
```

FB_NUMBER LOADS_END15

0	0	1
1	6	1
2	11	1
3	25	1
4	26	1

Group by freight bill and get total count

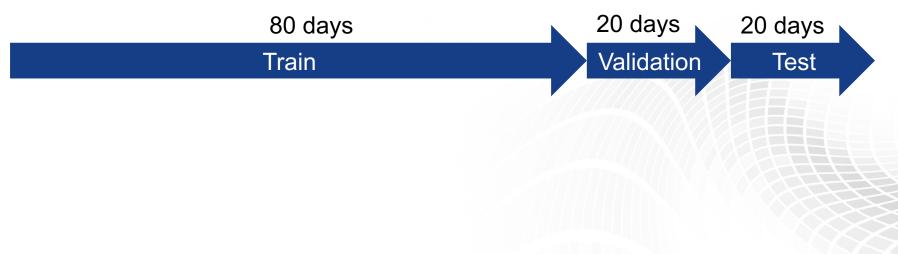
```
# add feature back to master dataframe and fill NA's with 0's
feat_master = feat_master.merge(feat_df, how='left').fillna(0)
feat_master.head()
```

FB_NUMBER LOADS_END15

0	0	1
1	3	0
2	6	1
3	11	1
4	17	0

Case Study – Split Data

Split up data for model building



Case Study – Dimensionality Reduction

Perform dimensionality reduction on dataset

```
# import principal components analysis library
from sklearn.decomposition import PCA
# create model object
model = PCA(n_components=0.99)
# fit model to training data
model.fit(train[train.columns[3:]])
# apply transformation to train/validation/test
X_tr = model.transform(train[train.columns[3:]])
X_va = model.transform(validation[train.columns[3:]])
X_te = model.transform(test[train.columns[3:]])
# check out the transformation
print(train.head())
print(X_tr[:5,:])
```


Case Study – Dimensionality Reduction

Original Dataset

	FB_NUMBER	DATE_ID	RATE	FEATUR	RE_1 F	EATUR	E_2 FEA	TURE	3 FE	ATURE	4
0	0	627 2.	071805	2.065	5139	2.389	623 2	3681	76		28
1	3	627 2.	559242	2.509	9390	2.327	381 2	2599	32	1	37
2	6	627 1.	399007	1.339	9911	1.391	344 1	3907	797	6/	81
3		627 1.									42
4		627 2.									
•	17	027 21	020100	2.020	100	1.720				-	•••
	FEATURE 5	FEATURE_6	FEATUR	E 7			FEATURE	62	FEATUR	E 63	١.
0		84.044000		_			-			- 1	
1	211	66.076316	69.292	025			13	359		1	
2		109.031781								1	
3		49.821667					8			1	
4		60.552632								1	
-							-			-	
	FEATURE_64	FEATURE_65	FEATUR	E_66	FEATUR	E_67	FEATUR	5_68	FEATU	RE_69	Ν
0	1092	0	2.19	2891		0		1		0	
1	1614	0	2.21	9208		0		1		0	
2	1135	0	1.79	0774		0		1		0	
3	1584	0	2.06	1148		0		1		0	
4	889	0				0		1		0	
		-				-		_		-	
	FEATURE_70	FEATURE_71									

	FEATURE_70	FEATURE_71
0	6	0
1	4	0
2	37	0
3	6	0
4	7	0

Transformed Values

١

]]]	1301.8157762	794.46254941	410.74495319	-55.52077609
	-363.88676579]			
Г	977.44797843	2391.57878914	159.64282395	-101.31166284

- -660.78018016] [-1410.9136752 2706.10335332 -2030.0697806 -731.86803437 129.81522113]
- [787.29685327 1727.55336435 737.47190343 -398.69307251 -385.49179226]
- [-135.60391357 1186.88862917 -871.95667574 -198.33688591 -546.49488741]]

Create variables for model building

load Random Forest regression model from sklearn.ensemble import RandomForestRegressor # range of values to test n trees = [10, 100]n feats = ['sqrt', 'log2'] $max_depth = [7, 9, 11, 13]$ # track scores scores = []

Build model with all combinations of parameters

```
# grid search
for i in n trees:
 for j in n feats:
    for k in max depth:
      print(i,j,k)
     # create model
     model = RandomForestRegressor(n estimators=i,
                                    max features=j,
                                    max depth=k,
                                    n jobs=-1)
      # fit to training data
     model.fit(X tr, train['RATE'])
      # predict on validation setpredict(train[train.columns[3:]])
      preds = model.predict(X_va)
      # calculate pseudo-R^2
     r2 = 1 - ((validation['RATE']-preds)**2).sum()/((validation['RATE']-validation['RATE'].mean())**2).sum()
      scores.append(dict(r2=r2, n_trees=i, n_feats=j, max_depth=k))
```

GUROBI

Check out R-squared for each model on the validation set

pri	int(pd.Data)	Frame(sco	ores))	
	max_depth	n_feats	n_trees	r2
0	7	sqrt	10	0.203400
1	9	sqrt	10	0.212975
2	11	sqrt	10	0.218592
3	13	sqrt	10	0.225572
4	7	log2	10	0.204371
5	9	log2	10	0.213731
6	11	log2	10	0.221816
7	13	log2	10	0.225626
8	7	sqrt	100	0.206476
9	9	sqrt	100	0.218043
10	11	sqrt	100	0.230300
11	13	sqrt	100	0.239658
12	7	log2	100	0.206313
13	9	log2	100	0.218773
14	11	log2	100	0.229910
15	13	log2	100	0.239538

GUROBI

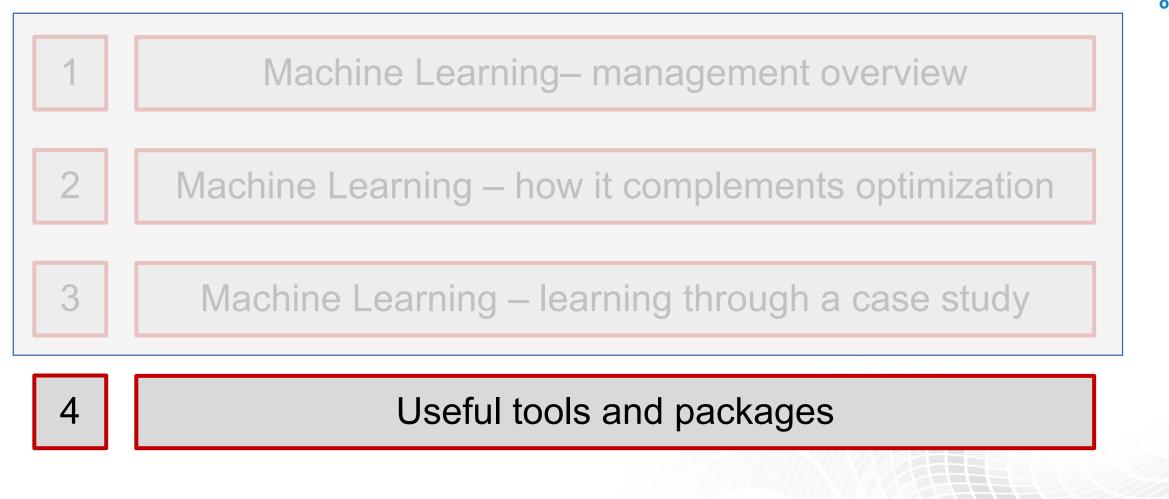
OPTIMIZATION

Rebuild model with both training and validation using best set of parameters and run test through it

print(r2)

0.319998292826

GUROBI



Useful Tools and Packages: NumPy

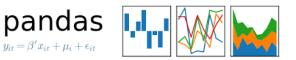
Useful Tools and Packages: Pandas

What is it?

Library adding support for DataFrames – column oriented data structures

Why is it important?

- DataFrames are an essential tool for data analysis in Python ٠
- Toolkit for aggregating, transforming, and manipulating data indispensable for model preparation
- Easy to learn, great for non-programmers or spreadsheet-• oriented analysts



Useful Tools and Packages: Sci-kit Learn

What is it?

Go-to package for machine learning algorithms

Why is it important?

- Contains massive set of tools for data analysis and learning including:
 - Cross-validation and model selection
 - Feature extraction and data preparation
 - Unsupervised learning (clustering, PCA, etc.)
 - Supervised learning (linear models, ensemble methods, svm, etc.)

GUROB

Thank you for joining us

- If you haven't already done so, please register at <u>http://www.gurobi.com</u>
- Visit http://www.gurobi.com/downloads/get-anaconda to try Gurobi and Python for yourself.
- For questions about Gurobi pricing contact <u>sales@gurobi.com</u> or <u>sales@gurobi.de</u>.
- A recording of this webinar, including the slides, will be available in roughly one week.

For other Opex Analytics Academy led sessions check out http://www.opexanalytics.com/academy/

😥 Upcoming Academy Sessions

Ever heard the phrase 'They can't see the forest for the trees'? We often find supply chain planning groups and processes in this exact position. Planning is often overlooked as an area of opportunity for the application of analytics solutions. The operational nature of planning cycles often leads to businesses focused on simply keeping their heads above water every day instead of working to understand and streamline the true data ... READ MORE & REGISTER NOW!

	🗊 Month	浏 Session Topic
	Aug 23rd, 2017	Keys to Finding the Funding for your Analytics Roadmap
	Sep 20th, 2017	Agile Product Development (not just in Silicon Valley)
	Oct 18th, 2017	What Should I Know About Open Source Software?

GUROBI