

The Power of Open Source: Transparent Global Energy Planning, Accessible to Everyone

Gurobi Live! The Decision Intelligence Summit

Dr. Martha Maria Frysztacki | October 18, 2023

Transforming Energy Planning with Open Technology.

Accelerating the World's Transition to Sustainable Energy Through **Open Source Tools and Open Data.**

About Us: Open Energy Transition •000

Our OS Energy Modelling Solutions

The Challenge

Traditional 'black-box' modeling approach

- lacks transparency
- slows down the energy transition

The Challenge

Traditional 'black-box' modeling approach

- lacks transparency
- slows down the energy transition

Hurdles in open-source tool adoption:

3/15

The Challenge

Traditional 'black-box' modeling approach

- lacks transparency
- slows down the energy transition

Hurdles in **open-source tool adoption**:

- lack of support
- software requirement gaps

Address challenges! ⇒ We aim to make energy planning more:

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

4/15

Address challenges! \Rightarrow We aim to make energy planning more:

• transparent: We use open data and open source tools only

About Us: Open Energy Transition ○○●○

Our OS Energy Modelling Solutions

Address challenges! \Rightarrow We aim to make energy planning more:

- transparent: We use open data and open source tools only
- accessible: We provide reliable modeling support & aim to close software requirement gaps

About Us: Open Energy Transition ○○●○

Our OS Energy Modelling Solutions

Address challenges! ⇒ We aim to make energy planning more:

- transparent: We use open data and open source tools only
- accessible: We provide reliable modeling support & aim to close software requirement gaps
- collaborative: We expand our user & developer community

The Change We Want to See

Outputs:

- more studies using open data & open tools
- better quality of open data & open tools
- ...

The Change We Want to See

Outputs:

- more studies using open data & open tools
- better quality of open data & open tools
- ...

Outcomes:

- more robust and sustainable energy systems
- lower costs of the whole energy infrastructure & electricity
- ...

About Us: Open Energy Transition ○○○●

Our OS Energy Modelling Solutions

Sneak-Peak into our modelling workflow:

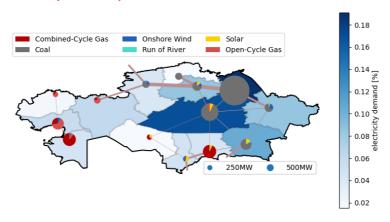
Our modelling solutions build on PyPSA [1], PyPSA-Eur [2] & PyPSA-Earth [3], thus utilizing Open Source Models and Open Data.

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Case Study: Decarbonise the Kazakh Electricity System () = I

Goal of the study:


- Simulate today's Kazakh electricity system (validation)
- Simulate various future decarbonisation scenarios (energy transition)
- ⇒ Reproducible, 100% transparent, reliable and open energy transition pathway

model & data available here: https://github.com/pypsa-meets-earth/pypsa-kz-data. Includes extensive workflow documentation!

Case Study: Visualize Today's Kazakh Electricity System

Input assumptions can be visualized and checked:

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Case Study: Validate Today's Kazakh Electricity Mix

Optimized modelling results can be validated against national reports

:		PyPSA [TWh]	national report [TWh]	error [TWh]	PyPSA [%]	national report [%]	error [%]
	carrier						
	gas	20.358883	21.73	1.371117	18.753352	20.103617	1.350265
	coal	74.573022	74.47	0.103022	68.692087	68.896290	0.204203
	onwind	1.718037	1.08	0.638037	1.582550	0.999167	0.583383
	hydro	10.862888	9.51	1.352888	10.006225	8.798224	1.208001
	solar	1.048470	1.30	0.251530	0.965786	1.202701	0.236915

 \Rightarrow Error <5% in all cases, mostly \approx 1%

© OET - Open Energy Transition

About Us: Open Energy Transition

Our OS Energy Modelling Solutions 000000

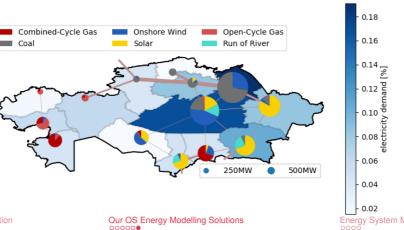
Energy System Modelling Optimisations

9/15

Case Study: Paths towards 40% Renewable Electricity

A validated model is a good starting point to make projections for the future to include more renewable technologies. Exemplary results (40% share of RE):

carrier		
Combined-Cycle Gas	3.48000	3.480000
Open-Cycle Gas	1.62540	1.625400
Coal	12.96700	12.967000
Onshore Wind	0.64870	8.239741
Run of River	0.06278	2.132999
Solar	0.82182	4.568450


About Us: Open Energy Transition

Our OS Energy Modelling Solutions 000000

Case Study: Visualize the Projected Electricity System

Projected results can be visualized:

About Us: Open Energy Transition

How to Make Investment Decisions for Renewable Technologies?

&

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance

$$\min_{\substack{G_{v,s}, H_{v,r}, \\ g_{v,s,t}, h_{v,r,t}^{\pm}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{v,s} G_{v,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{v,r} H_{v,r} + \right. \right.$$

[1], [2]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance

$$\min_{\substack{G_{v,s}, H_{v,r} \\ g_{v,s,t}, h_{v,r,t}^{\pm} \\ f_{(v,w),t}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{v,s} G_{v,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{v,r} H_{v,r} + \right) \right]$$

[1], [2]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in T} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance

$$\min_{\substack{G_{V,s,t}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right.$$

[1], [2]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

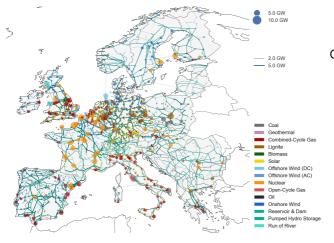
About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Objective: minimise the total system cost that consist of

- investment costs in new generation projects
- investment costs in new storage capacity
- investment costs in new transmission line projects
- variable costs, such as costs for fuels or maintenance

$$\min_{\substack{G_{V,s}, H_{V,r} \\ g_{V,s,t}, h_{V,r,t}^{\pm}}} \left[\sum_{v \in \mathcal{V}, s \in \mathcal{S}} \left(c_{V,s} G_{V,s} + \sum_{v \in \mathcal{V}, r \in \mathcal{R}} c_{V,r} H_{V,r} + \right. \right]$$


[1], [2]

$$\sum_{(v,w)\in E} c_{(v,w)} F_{(v,w)} + \sum_{t\in \mathcal{T}} w_t o_{v,s} g_{v,s,t} \Big) \Big]$$

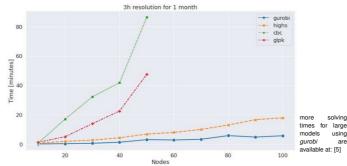
About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Optimization subject to:

- electricity circuit rules
- capacity of transmission lines & generators
- meeting electricity demands (everywhere & at all times!)
- variability of the weather

About Us: Open Energy Transition


Our OS Energy Modelling Solutions

How to solve such large problems?

This is where optimisation **solvers** come into play:

- small instances and testing: open-source solvers,
- larger scale and for business cases: gurobi [4]

About Us: Open Energy Transition

Our OS Energy Modelling Solutions

Literature I

- [1] Tom Brown, Jonas Hörsch, and David Schlachtberger. "PyPSA: Python for Power System Analysis". In: *Journal of Open Research Software* 6 (2018), p. 4. DOI: https://doi.org/10.5334/jors.188.
- [2] Jonas Hörsch, Fabian Hofmann, David Schlachtberger, et al. "PyPSA-Eur: An Open Optimisation Model of the European Transmission System". In: *Energy Strategy Reviews* 22.v3 (2018), pp. 207–215. DOI: doi.org/10.1016/j.esr.2018.08.012.
- [3] Maximilian Parzen, Hazem Abdel-Khalek, Ekaterina Fedotova, et al. "PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa". In: Applied Energy 341 (2023), p. 121096. ISSN: 0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2023.121096. URL: https://www.sciencedirect.com/science/article/pii/S0306261923004609.
- [4] Gurobi Optimzation. URL: https://www.gurobi.com/.

References

Literature II

Martha Maria Frysztacki, Jonas Hörsch, Veit Hagenmeyer, et al. "The strong effect of network resolution [5] on electricity system models with high shares of wind and solar". In: Applied Energy 291 (2021), p. 116726. ISSN: 0306-2619. DOI: doi.org/10.1016/j.apenergy.2021.116726.