An optimization-based procedure for the operative schedule design of an airline

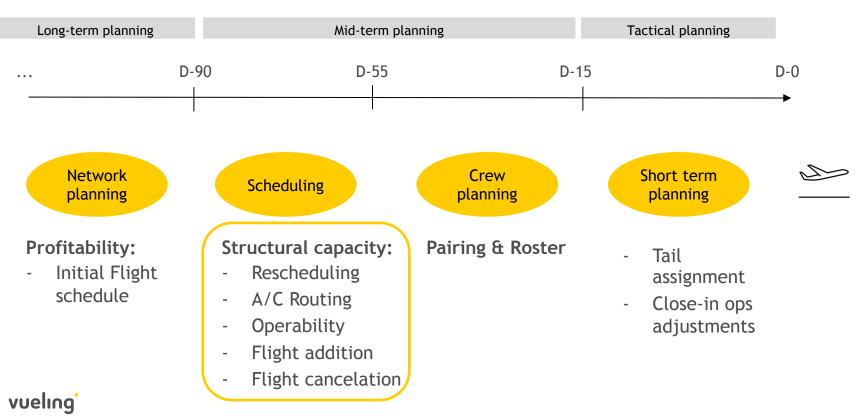
Daniel Ramón-Lumbierres, Victoria Rebillas, Mohammad Kouhi

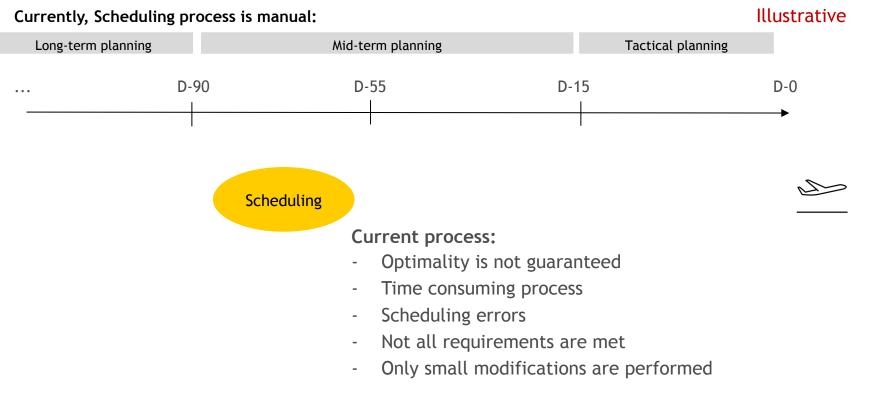
Octuber, 2023

Copyright by Vueling.

Contents

- Introduction
- Problem definition
- □ Model development
- **C** Extensions to the daily problem
- □ Weekly problem development
- Results
- Conclusions


Introduction



Vueling Network planning process:

Illustrative

Introduction

Goals and benefits:

н

Goals	 Modify the original network so that aircraft utilization is maximized At this point, expected revenue and operational cost are not considered Minimize flights reschedule with respect to the original network within the maximal aircraft utilization Facilitate the network operability at further steps
Expected Benefits	 Scheduling department From manual to automatic More flexibility and time-efficiency Operations department Friendly flight patterns to operate Vueling
	 Profit increase due to aircraft use

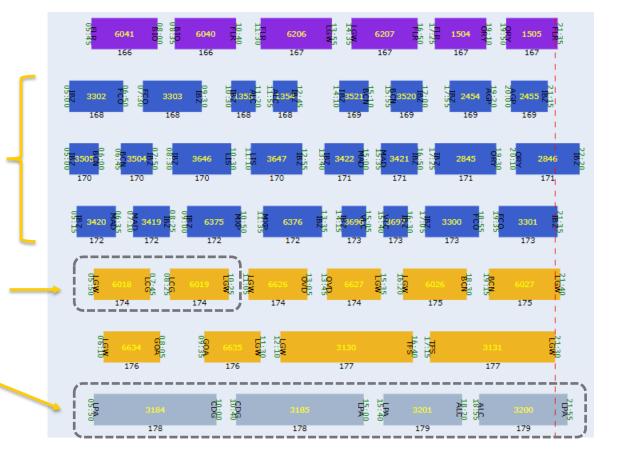
Problem definition

Decision objects in Network Adjustment are subrotations:

- Sequences of 2, 3 or 4 flights with matching airports
- The beginning and ending airport is their base

The main problem input is an original network, where

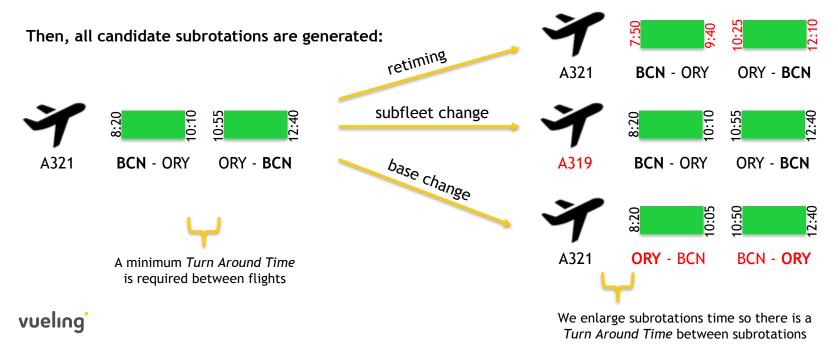
- regular flights have initial departure and arrival times,
- they are originally associated to certain base airport,
- as well as to a given subfleet: A319, A320 or A321


Problem definition

Original network:

Colors here represent different Vueling subfleet

Most of the subrotations are *Round Trips*, composed by two flights


A *rotation* is the whole sequence an aircraft performs each day

Problem definition

Firstly, a list of optional flights are added:

- The objective is to fulfill the flying network
- They are useful in case of network modifications or cancellations
- Unlike the original ones, these flights can be scheduled or not

Model development

The objective of the optimization process is to select subrotations to operate: - out of the combinations of original subrotations we have generated

 $\begin{array}{ll} \textit{original subrotations} & \textbf{S}^{\textit{original}} \\ \textit{optional flights} & \textbf{F}^{\textit{optional}} \xrightarrow{} \text{mandatory subrotations} & \textbf{S}^{\textit{M}} \\ \textit{optional subrotations} & \textbf{S}^{\textit{O}} \end{array}$

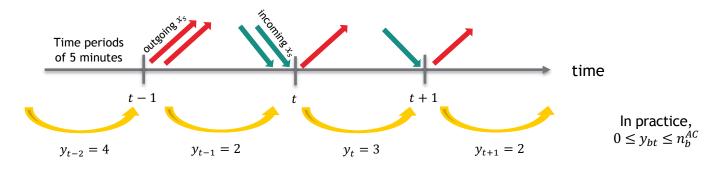
These candidate subrotations are copies of the original ones

- with modified times, subfleet and/or base airport
- the same flight f appears in several candidate subrotations $s \in S_f$
- unlike in the original network, where each flight appears exactly once

Then, we define the following decision variables:

 $\boldsymbol{x_s} \in \{\boldsymbol{0}, \boldsymbol{1}\}, \qquad \forall s \in S = S^M \cup S^O$

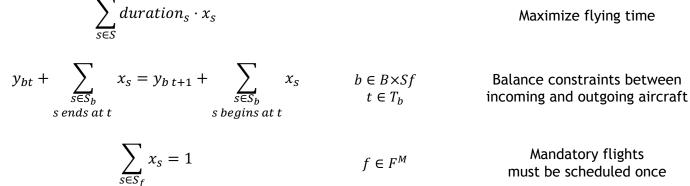
- There is a binary variable for each candidate subrotation: we must generate them carefully!


Likewise, we define variables to include conditions on the number of aircrafts

- Subfleet of each base, indexed by b, operate along a set of time periods T_b
- Besides, there is a number of available aircraft denoted as n_b^{AC}

We want to compute how many aircraft are at their base:

 $y_{bt} \in \{0, \dots, n_b^{AC}\}, \quad b \in Base \times Subfleet, \quad t \in T_b$


- y_{bt} computes the number of aircraft at their base b at the beginning of time period t

The daily optimization model is formulated as follows:

max

s.t.

 $f \in F^M$

 $\sum_{s \in S_f} x_s \le 1$

 $x_s \in \{0, 1\}, \quad s \in S$

 $0 \le y_{ht} \le n_h^{AC}, \quad b \in B \times Sf, t \in T_h$

 $f \in F^0$

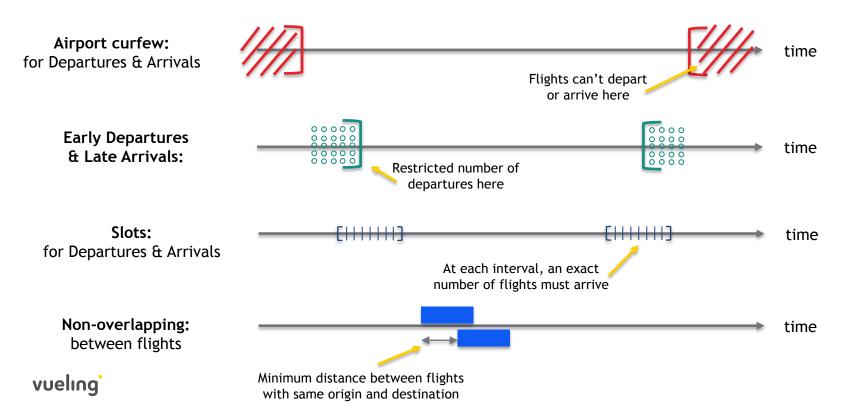
Optional flights may be scheduled once

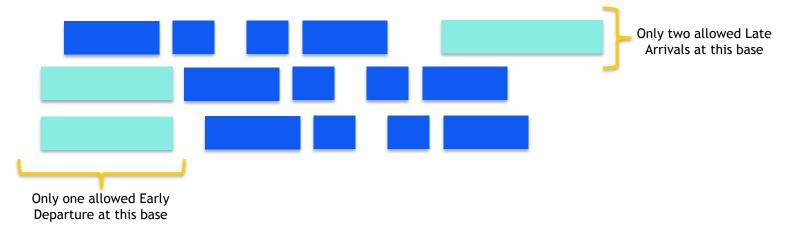
Mandatory flights

must be scheduled once

Maximize flying time

Variables domain Maximum # aircraft

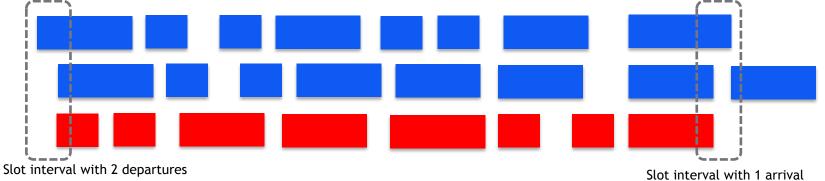

Extensions to the daily problem



Extensions to the daily problem

Network Adjustment problem includes several operational limitations:

Early Departure and Late Arrival restrictions are met incorporating certain virtual tasks:


Following the stated formulation, we add Early Departure and Late Arrival tasks as subrotations and fix their associated variables to 1:

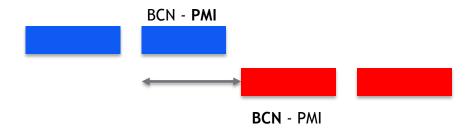
$$x_s = 1 \qquad \qquad s \in S^{ED} \cup S^{LA}$$

Inclusion of Early Departue & Late Arrival blocks to restrict flights

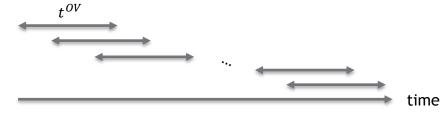
Extensions to the daily problem

Slot conditions require an exact number of departures and arrivals at certain airports and time windows:

Slot conditions are implemented as follows:


$$\sum_{\substack{f \in F \\ f \ departs \ at \ t}} \sum_{\substack{s \in S_f \\ s \in S_f}} x_s = slot_t^{DEP} \qquad t \in T^{DEP \ SLOT} \qquad \text{A certain number of flights must depart at each departure slot}$$

$$\sum_{\substack{f \in F \\ f \ arrives \ at \ t}} \sum_{\substack{s \in S_f \\ s \in S_f}} x_s = slot_t^{ARR} \qquad t \in T^{ARR \ SLOT} \qquad \text{A certain number of flights must arrive at each arrival slot}$$


In addition, the problem includes scheduling conditions to avoid overlapping:

- Two flights with same origin and destination are overlapped whenever their depart time difference is lesser than certain quantity, defined by the user

For each origin-destination pair with high frequency, time windows are generated to tackle this:

- Given an overlapping length t^{OV} , we consider all time windows of this length

Each time window define a disjunctive set:

- For each origin-destination pairs with high frequency flights

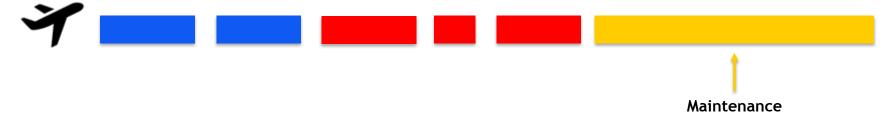
 $s, r \in D^{OV} \Leftrightarrow s$ and r contain same O-D flight within a time window

- Finally, all these disjunctive sets are collected into $\Omega \coloneqq \{D_1^{OV}, ..., D_k^{OV}\}$

Therefore, non-overlapping conditions are implemented as follows

$$\sum_{s \in D_i^{OV}} x_s \le 1$$

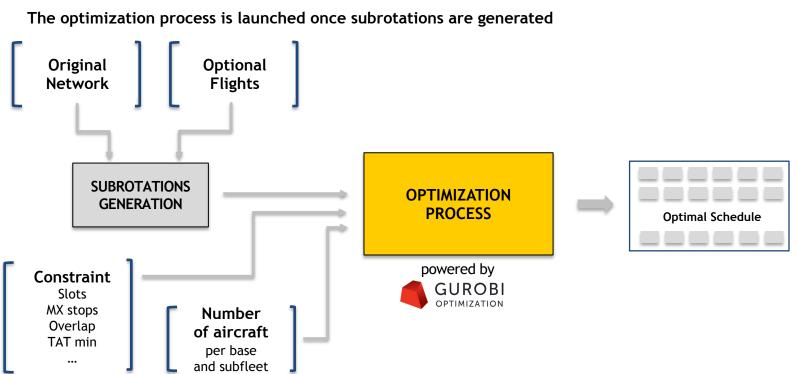
 $D_i^{OV} \in \Omega$


At most one subrotation of a disjuntive set can be scheduled

Extensions to the daily problem

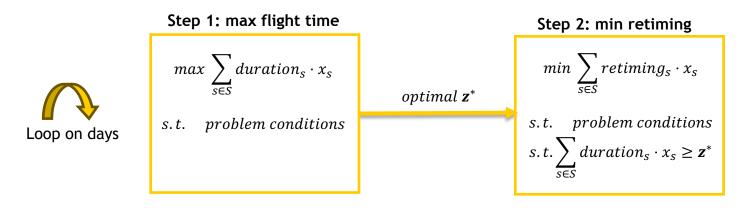
Maintenance tasks are also included in the problem:

- Daily tasks for Vueling aircrafts
- Usually performed at night, between operative days



Maintenance tasks are properly assigned in later steps of the decision making process:

- Their conditions depend on factors not included in the scheduling problem

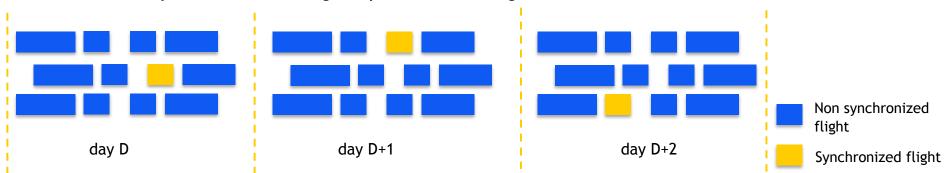

However, their incorporation here facilitates the finding of operative solutions

Extensions to the daily problem

Daily optimization process:

- The optimization process for separated days is composed by two optimization runs:

This lexicographic multi-objective approach is performed because:


- There is a priority in fulfilling the flight network as much as posible
- The first optimization problem has lots of alternative optimal solutions
- We want to minimize the impact of rescheduling already published flights

Weekly problem development

Weekly problem developemnt

We want to synchronize certain flight departure times along the week:

Extension to weekly problem with synchronization constraints:

- Synchonization conditions need a larger time horizon as they relate variables of sepatared days

Already declared variables get an extra index $d \in D$ for each operating day

$$(x_s, y_{bt}) \Longrightarrow (x_s^d, y_{bt}^d), \quad d \in D$$

Weekly problem developemnt

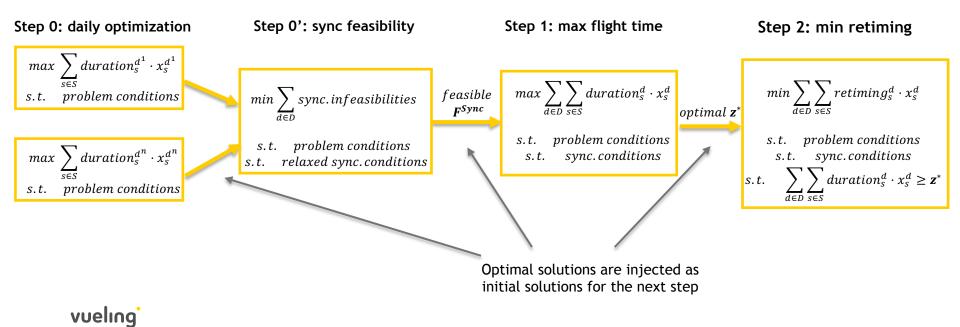
New variables emerge to compute the time where each synchronized flight is scheduled:

$$z_{ft} \in \{0, 1\}, \qquad f \in F^{Sync}, \qquad t \in T$$

such that:

$$\sum_{t \in T} z_{ft} \le 1$$

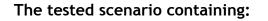
$$f \in F^{Sync}$$
Synchonized flights must depart at the same time
$$\sum_{s \in S_f} x_s^d \le z_{ft}$$


$$f \in F^{Sync}$$
Linking constraints for each day and departure time

Weekly optimization process:

- The problem becomes too big, cannot be solved in reasonable time
- If many flights are required to synchronize, the problem may become infeasible

Approach through feasibility variables and injection of initial solutions:


- Separate problems are solved for each day
- to provide an initial solution of a synchronization feasibility problem
- which, in turn, provides an initial solution (excluding infeasible flights to synchronize)

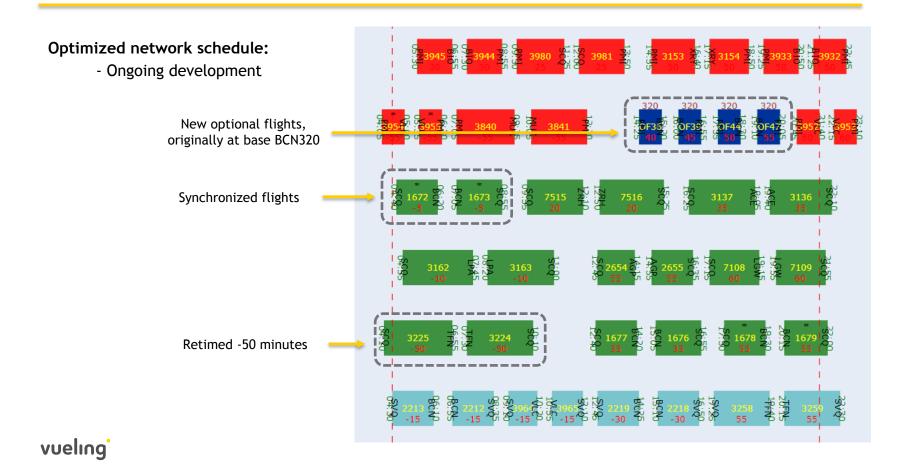
Results

- Seven flight days, 3 July 2023 to 9 July 2023,
- 98 to 103 aircraft, distributed along 16 subfleet
- 4463 mandatory flights + 448 optional flights, with a retiming of ± 60 minutes

The original optimization model has:

- 123,485 variables (almost all are binary) and 49,657 constraints
- 1% relative optimality gap

The execution times of the four above-mentioned steps are:



vueling

Results

KPIs of optimized network:

Day	original flights	new flights	original flight time	optimized flight time	retiming after step 1	retiming after step 2
07/03	647	28 +4.33%	1262h	1301h +3.10%	191h	14h -92.95%
07/04	635	36 +5.67%	1240h	1290h +4.03%	184h	13h -93.09%
07/05	636	38 +5.97%	1242h	1293h +4.11%	190h	11h -94.13%
07/06	641	38 +5.93%	1240h	1292 +4.19%	197h	13h -93,26%
07/07	638	38 +5.96%	1227h	1278h +4.16%	205h	14h -93,29%
07/08	623	38 +6.10%	1260h	1310h +3.25%	196h	11h -94.42%
07/09	643	42 +6.53%	1244h	1298h +4.34%	186h	11h -94.22%
total	4463	258 +5.78%	8715h	9062h +3.98%	1350h	86h -93.62%

Results

Conclusions

Current status:

onclusions

- We have developed a mathematical formulation to fulfil the network with new flights so the most of operational conditions are met
- We provide a tool to automatize this process with Vueling specifications

This project is under development, so it is constantly evolving:

- Vueling is extending the scope of this project to correct original networks regarding unmet conditions besides optimizing them
- Other synchronization approach is in construction as we want to synchronize along months
- A formulation that includes maintenance tasks and buffers conditions is being developed without increasing so much the size of optimization models

THANKS FOR YOUR KIND ATTENTION

Daniel Ramón-Lumbierres: daniel.ramon@col.vueling.com Victoria Rebillas Loredo: victoria.rebillas@col.vueling.com Mohammad Kouhi: mohammad.kouhi@col.vueling.com

