Sports Scheduling with Gurobi

Concept \& Use Case

GUROBI

OPTIMIZATION

@GotSport

Agenda

- A bit of background
- Optimization opportunities in sports
- Sports Scheduling Basics
- Mathematical Modelling approach
- Challenges
- Case Study: CBF

@GotSport

- Leader in Youth Sports since 1996
- 4.2 M registered players in the USA
- Working with > 60 professional sports leagues across the globe
- Soccer, Rugby, Basketball, Volleyball, Cricket, Lacrosse,
- Handball, American Football, Hockey, etc.
- GotSport Pro
- GotSport
- GotSport Analytics
- Our 4th year as a Gurobi client

ఇGotSport

(SPFL $\because:::^{\circ}$
$: 8::$
$\because:: 8: \cdot$

$:::: \because: \because:$
$: \because$ $\because \because:$ $\begin{aligned} & \text { P } \\ \text { U } & \text { B }\end{aligned}$

Sports

Scheduling Basics
The importance of a good schedule

Sports Scheduling Basics

A seemingly simple problem...

- N-1 match days
- Every team plays each opponent once
- Task:
- Plan a matchup between each pair of teams and assign a match day to each matchup

Sports Scheduling Basics

Subject to...

- One matchup per team, per weekend
- For each team, half of the matches (+/-1) should be played at home, and the other half away
- Etc.

QGotSport

A：B	B：C	C：D	D：E		E：F				
A：C	B：D	C：E	D：F						
A：D	B：E	C：F							
A：E	B：F				1	2	3	4	5
				A	F	：	c	。	t
A：F				${ }^{\text {B }}$	：	A	F	c	。
		？		c	。	t	A	s	F
				－	c	F	E	A	8
				E	в	c	。	F	A
				F	A	－	\％	E	c

Sports Scheduling Basics

A MIP formulation

$$
\min \sum_{i \in T} \sum_{j \in T \backslash\{i\}} \sum_{p \in P} c_{i, j, p} x_{i, j, p}
$$

$$
\begin{array}{lll}
\text { s.t. } \sum_{p \in P}\left(x_{i, j, p}+x_{j, i, p}\right) & =1 & \forall i, j \in T, i<j \\
\sum_{j \in T \backslash\{i\}}\left(x_{i, j, p}+x_{j, i, p}\right) & =1 & \forall i \in T, p \in P \\
x_{i, j, p} & \in\{0,1\} & \forall i, j \in T, i \neq j, p \in P
\end{array}
$$

Sports Scheduling Basics

Isn't this simple?

- Assuming, we have 20 teams....
- $20 \times 19 \times 19=7220$ binary variables
- $20 \times 19 \times 2=760$ constraints

Sports Scheduling Basics

Yes, but...

- Huge number of possible solutions
- Not trivial at all to find these solutions by hand and finding a solution with certain additional characteristics is very hard
- NP-complete problem

@GotSport

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
A	F	B	C	D	E
B	E	A	F	C	D
C	D	E	A	B	F
D	C	F	E	A	B
E	B	C	D	F	A
F	A	D	B	E	C

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
A	F	B	C	D	E
B	E	A	F	C	D
C	D	E	A	B	F
D	C	F	E	A	B
E	B	C	D	F	A
F	A	D	B	E	C

Idea l: let's just change home opponent

- A plays 4 consecutive games at home
- C plays 3 consecutive games away

Idea 2: let's swap round 2 and 3

- All of a sudden there are a lot of cases, where a team plays two consecutive home or two consecutive away matches

Sports Scheduling Basics

Growing Complexity and Challenges

Conflicting Restrictions and Rules

QGotSport

Sports Scheduling Basics

Advantages of MIP solvers

- Conflicting constraints can be found more easily
- It is easy to adjust constraints and add more rules, which could be difficult with other techniques
- Solution quality is consistently high
- Can be easily combined with other techniques,
- e.g. local search
- Cost efficient: faster development, short turnaround time

Sports Scheduling Basics

Tricks to solve hard problems

- Decomposition of the problem:
- First assign H/A, then find a match assignment
- Break the problem into different parts (e.g. first solve the first 10 rounds, then the rest)
- Not always possible, Impact on feasibility needs to be analyzed carefully
- Large Neighborhood Search, Fix-And-Relax Heuristic
- Very powerful if an initial (near-)feasible solution can be found easily

Case Study: CBF
 A particularly hard optimization challenge

CBF Serie A

- 20 Teams
- Double Round Robin Tournament
- Relatively few team specific restrictions
- Strong focus on fairness
- Consecutive home/ away games (HH or AA) need to be minimized and balanced out across teams
- No tolerance for HHAHH or AAHAA sequences
- Spacing of matches against strong teams is very important

CBF Serie A

- Broadcasting requests:
- Derbies (classicos) should be spread out as much as possible
- Some travel concerns
- Equal home balance for all teams across midweek dates
- Cross pairing constraints

QGotSport

Solving this...

- If this is modelled as a single model and passed to Gurobi, no solution would be found, even after 30 days
- A slightly better way to model it, is to relax some of the hard constraints
- For example, instead of strictly forbidding three consecutive Home games (HHH), it can be added as a soft constraint, with a high penalty
- This approach would find a solution after a few days, but it would still not find a high-quality solution after 30 days

Clearly, this isn't the way to go

- Solutions need to be found faster (hours instead of weeks)
- It is essential for clients to review multiple solutions and not just present one final "most optimal solution"
- As with all optimization projects, it is hard to capture all requirements
- A client might prefer a solution with a "worse" score, because of some characteristics he didn't mention
- With multi-objective optimization problems, weighing the different objectives is always hard

Decomposition approach

- Two approaches from literature (see: Dirk Briskorn):
- First schedule matchups, then decide on who is home for each matchup
- For each team and matchday, decide who plays home, then find matches that satisfy these
- additional restrictions
- ("First HAP, then schedule")

First HAP, then schedule

- Not every HAP can be used to generate a feasible schedule (in fact, only a tiny fraction)
- What are the characteristics of a "feasible HAP"?
- Big challenge: how to find HAPs for which a corresponding schedule exists?
- Enumeration?
- MIP?
- Constraint programming?

Closing Remarks \& Summary

QGotSport

ঐGotSport

Summary

- Optimization can make a big impact in Sports
- Reduce costs
- Use resources more efficiently
- Create a more exciting and competitive season
- Increase revenues of leagues and clubs

