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LP and MIP

Base problems that Gurobi solves

Simplex and Barrier algorithms for LP

Branch-and-cut for MIP
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Nonlinearities
Application Phenomenon Nonlinearity

Finance risk quadratic (convex)

Truss topology physical forces quadratic (convex)

Pooling
(petrochemical,
mining, agriculture)

mixing products quadratic non-convex

electricity
distribution
(ACOPF)

Alternative Current  and  (can be
made quadratic)

machine learning — logistic function, 

chemical
engineering

chemical reactions —

many more…

sin cos

tanh
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The MINLP Goal
Ideally, we seek to solve

, , reasonably smooth

If  or  is not finite: undecidable in general

Even assuming finiteness it’s very difficult in theory and practice

Note that integer variables are “not convex” and can be represented as a
polynomial if bounded

min f (x)
s.t:
(x) ≤ 0, i = 1,… , mgi
∈ ℤ, j ∈xj

l ≤ x ≤ u

f : → ℝℝ n : → ℝgi ℝ n

l u
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Convex or not convex?

Any segment connecting two points
inside the region is inside the region.

There exists two points in the region
the segment connecting them is not
completely in the region.

Convex Region Non-Convex Region
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Why?

Optimization “easy” (usually)

Start from any point in the region

Take steps inside the region improving
objective

When there is no more step global optimum

Interior point methods for any closed convex
region

Simplex algorithm for polyhedra

Optimization “hard”

Start from any point in the region

Take steps inside the region improving
objective

When there is no more step local optimum is
reached

Need a divide-and-conquer algorithm to find a
global optimum.
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Nonlinearities in Gurobi
Convex

Quadratic objective:  with 

Quadratic constraints:  describing a convex region

 is a simple case, can be more complex
Non-Convex

Discrete objects: integer variables, SOS constraints

Bilinear terms: 

Non-Convex quadratic forms: 

General functions: , , ,

Reformulated as PWL in Gurobi 9 and 10

min x + QxcT xT Q ⪰ 0
x + Qx ≤ baT xT

Q ⪰ 0

=zij xixj
x + Qx ≤ baT xT

exp log cos

Treated directly
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Problem definition

 are assumed to be symmetric

 is positive semi definite

The quadratic forms  are second order cone
representable.

min x + xcT xTQ0

s.t:
x + x ≤ , k = 1,… , makT xTQk bk
∈ ℤ, j ∈xj

l ≤ x ≤ u

, , … ,Q0 Q1 Qm

Q0

+ x −aTk xTQk bk
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The second order cone
Through simple algebra, can be
represented as SOC:

, with 

, with 
(rotated SOC)

, with 

Very powerful but modeling sometimes
far from obvious.

Not all forms recognized by solvers
= {x ∈ : ≤ , ≥ 0}n ℝ n+1 ∑ n

j=1 x2j x20 x0

≤∑ n
i=1 x2i x20 ≥ 0x0

≤∑ n
i=2 x2i x0x1 , ≥ 0x0 x1

x + Qx ≤ baT xT Q ⪰ 0
, with Qx ≤xT y2 Q ⪰ 0, y ≥ 0
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The basic branch-and-bound algorithm

x ≤ 0 x ≥ 1

z ≤ 2 z ≥ 3 y ≤ 1 y ≥ 2

t ≤ 0 t ≥ 1

c* = 0.5,c* = 0.5,
x*=0.3x*=0.3

c* = 0.6,c* = 0.6,
z*=2.2z*=2.2

c* = 0.8,c* = 0.8,
y*=1.6y*=1.6

c* = 2c* = 2 c* = +∞c* = +∞ c* = 2.1c* = 2.1 c* = 1.3c* = 1.3
t* = 0.5t* = 0.5

c* = ? c* = ?

At each node of the tree:

no yes

Solve continuous relaxation

Integer feasible?

Branch New solution?
Update best known

In MILP and MIQP continuous
relaxation usually solved by simplex.

In MISOCP/MIQCP, continuous
relaxation solved by barrier.
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The outer approximation cut

Let , with 
a convex function

For any , the constraint:

is valid

If , it cuts :

C = {g(x) ≤ b : x ∈ }Rn g

∈x∗ ℝ n

∇g( )(x − ) + g( ) ≤ 0x∗ x∗ x∗

∉ Cx∗ x∗

∇g( )( − ) + g( ) > 0x∗ x∗ x∗ x∗
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Outer approximation branch-and-cut

x ≤ 0 x ≥ 1

z ≤ 2 z ≥ 3

c* = 0.5,c* = 0.5,
x*=0.3x*=0.3

c* = 0.6,c* = 0.6,
z*=2.2z*=2.2 c* = ?

c* = 2c* = 2
SOCP?SOCP? c* = ?

c* = ? c* = ?

Drop quadratic constraints and solve
an LP relaxation at each node.

Integer feasible nodes are not
necessarily solutions.

no yes

yes no

Solve LP relaxation

Integer feasible?

Branch SOCP Feasible?

New solution?
Update best known Generate OA cuts
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Numerical difficulties
OA branch-and-cut builds a cutting
plane approximation of smooth
functions

It can happen that node solution:

is integer feasible

is not SOC feasible

OA cuts are not cutting enough

no yes

yes no

no cutting!

Solve LP relaxation

Integer feasible?

Branch SOCP Feasible?

New solution?
Update best known Generate OA cuts
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Numerical difficulties
OA branch-and-cut builds a cutting
plane approximation of smooth
functions

It can happen that node solution:

is integer feasible

is not SOC feasible

OA cuts are not cutting enough

no yes

yes no

no cutting!

Solve LP relaxation

Integer feasible?

Branch SOCP Feasible?

New solution?
Update best known Generate OA cuts

Rely on barrier algorithm for those nodes
(usually very few).

New in Gurobi 11
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Cone disaggregation and outer approximation
An exponential number of cutting
planes is needed to approximate a
convex quadratic form.

Cone disaggregation
From

Create variables , such that
 (rotated SOC)

Replace initial constraint with

≤ , ≥ 0∑
i=1

n

x2i x20 x0

≥ 0yi
≤x2i yix0

≤∑ n
i=1 yi x0
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Pitfalls of disaggregation

The reformulation is correct: every solution of  translates to 

But a solution of  with a small infeasibility can have a large one in :

Suppose ,  and :

Infeasibility in  is 

Infeasibility in  is 

Gurobi tries to deal with it but can be an issue.

(A)
⎧

⎩
⎨⎪⎪

≤ ,∑
i=1

n

x2i x20

≥ 0x0
(B)

⎧

⎩
⎨
⎪⎪
⎪⎪

≤∑
i=1

n

yi x0

≤x2i yix0
y ≥ 0, x ≥ 0

i = 1,… , n

(B) (A)
(B) (A)

= 1x0 =yi 1
n =xi + ϵ1

n
‾ ‾‾‾‾‾√

(B) ϵ

(A) n ⋅ ϵ
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Options for MISOCP/MIQCQP

 Automatic choice (default)

 Use QCP branch-and-bound

 Use Outer Approximation

 Automatic choice (default)

 Leave the model as is (for B&B)

 Reformulate to SOC

 Reformulate to SOC and disaggregate

MIQCPMethod

−1
0
1

PreMIQCPForm

−1
0
1
2
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Example
Portfolio Optimization
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Stepping into a non-convex world
24
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Non-Convex MIQCQP

 are assumed to be symmetric

Continuous relaxation is NP-hard!

Solution strategy:

Build a convex relaxation

Refine it through branching.

min x + xcT xTQ0

s.t:
x + x ≤ ,akT xTQk bk
∈ ℤ, j ∈xj

l ≤ x ≤ u

k = 1,… , m

, ,… ,Q0 Q1 Qm
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NonConvex parameter in Gurobi

 automatic  (default)

 Return error if original model has non-convex Q objective or constraints 

 Return error if presolved model has non-convex Q that cannot be linearized 

 Accept non-convex Q by building a bilinear formulation

Default behavior change: New default  (was )).

NonConvex

−1
0
1
2

New in Gurobi 11

2 1
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Bilinear formulation

For each product  in the model

Introduce a new variable 

Add the bilinear constraint

Replace product with 

xixj
zij

=zij xixj
zij

min x + ⟨ , Z⟩cT Q0

s.t:
x + ⟨ , Z⟩ ≤ ,akT Qk bk

Z = xxT

l ≤ x ≤ u

(⟨Q, Z⟩ = )∑
i

∑
j
qijzij

k = 1,… , m
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More details on bilinear formulation

Try as much as possible to avoid creating bilinear terms:

if one variable is fixed

if one variable is binary (can be reformulated)

square of binary 

square term  with  is convex

If  always appears in inequalities with  of same sign relax to:

, if 

, if 

= xx2

qiix2 i > 0qi
xixj qij

≥zij xixj > 0qij
≤zij xixj < 0qij

28
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, if 

, if 
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Bilinear relaxation

Relax non-convex constraint  using convex enveloppes.Z = xxT

min x + ⟨ , Z⟩cT Q0

s.t:
x + ⟨ , Z⟩ ≤ ,akT Qk bk
( , ) ≤ ≤ ( , )z− xi xj zij z+ xi xj

l ≤ x ≤ u

k = 1,… , m
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Convex envelopes: parabola
Consider the square case: 

It is convex:

Can be dealt with by OA.

 is given by the secant:

z = x2

z ≥ x2

( , ) =z− xi xi x2i

z ≤ , −1 ≤ x ≤ 1.5x2

( , )z+ xi xi

= (u + l) − l ⋅ uz+ii xi

30
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Convex envelopes: products (McCormick)

Lower enveloppe z−ij Upper enveloppe z+ij

= max{ } ≤ ≤ = min{ }z−ij
+ −𝑙jxi 𝑙i𝑥j 𝑙i 𝑙j
+ −𝑢jxi 𝑢ixj uiuj

zij z+ij
+ −𝑙jxi ui𝑥j uilj
+ −𝑢jxi lixj liuj
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Spatial branching
Let  be the solution of the bilinear
relaxation

If not integer feasible, can branch on an
integer variable

Otherwise:

If , for all bilinear term, we have a
solution

Otherwise refine our bilinear relaxation:

Pick  or  s.t. 

Create two child nodes with  and

Refine bilinear relaxation in the two
nodes

( , )x∗ z∗

=z∗ij x∗i x∗j

xi xj ≠z∗ij x∗i x∗j
≤xi x∗i

≥xi x∗i
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Other techniques targeted at non-convex MIQCQP
RLTCuts

Reformulation Linearization Technique (Sherali and Adams, 1990)

Multiply linear constraint by a variable, linearize resulting products

BQPCuts
Facets of the Binary Quadratic Polytope (Padberg 1989)

Clique cuts from the paper

SDPCuts

Relax  to , and outer approximate resulting cone

OBBT:

Optimization based bound tightening

Infer tighter bound on variables involved in products by LP.

Z = xxT Z ⪰ xxT
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Non-convex MIQCQP performance history

Improved recognition of convexity

Branching improvements

Strong branching for bilinear terms

Better choice for deciding to branch on
an integer or bilinear

New in Gurobi 11

874 models – discarded: 40 due to inconsistent answers, 278 that none of the versions can solve –

34
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Example solve
Pooling problem from MINLPLIB

m.optimize()1

Gurobi Optimizer version 11.0.0 build v11.0.0beta2 (mac64[x86] - macOS 
13.6 22G120)

CPU model: Intel(R) Core(TM) i5-1038NG7 CPU @ 2.00GHz
Thread count: 4 physical cores, 8 logical processors, using up to 8 
threads

Optimize a model with 662 rows, 403 columns and 2229 nonzeros
Model fingerprint: 0x883de6ff
Model has 70 quadratic constraints
Variable types: 295 continuous, 108 integer (108 binary)
Coefficient statistics:
  Matrix range     [2e-03, 1e+03]
  QMatrix range    [1e+00, 1e+00]

QLMatrix range [1e+00 1e+00]
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Function constraints in Gurobi
Since Gurobi 9.0. Allow to state 

 is a predefined function

 and  are one-dimensional variables

Library of predefined functions include:

, , , , logistic

, , ,

monomials , polynomials of one variable 

𝑦 = 𝑓(𝑥)

𝑓

𝑦 𝑥

ex ax ln(x) (x)loga
sin(x) cos(x) tan(x)

xa + + +. . .a0 a1x1 a2x2

38
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Function constraints in Gurobi
Since Gurobi 9.0. Allow to state 

 is a predefined function

 and  are one-dimensional variables

Library of predefined functions include:

, , , , logistic

, , ,

monomials , polynomials of one variable 

𝑦 = 𝑓(𝑥)

𝑓

𝑦 𝑥

ex ax ln(x) (x)loga
sin(x) cos(x) tan(x)

xa + + +. . .a0 a1x1 a2x2

Example:

m = gp.Model()1
x = m.addVar()2
y = m.addVar()3
m.addGenConstrLog(x, y)4
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New treatment in Gurobi 11

Gurobi 9.0-10.0: nonlinear functions
replaced during presolve by a piece-
wise linear approximation.

Gurobi 11, can treat nonlinear
functions directly:

Set FuncNonLinear=1
No other changes to users’ code

Gurobi ≤ 10

Gurobi 11
FuncNonLinear=1

Integer variables
SOS Constraints

General function
y = f(x)

MILP MINLP

branch-and-cut spatial b&b

39
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Algorithmic approach

Similar to bilinear
formulation/relaxation

For each function, compute
lower/upper envelope

Spatial branching to refine them

Additional difficulties:

detect when functions are
convex/concave

functions can be locally convex
y = log(x), 0.8 ≤ x ≤ 5

40
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Great powers and great responsabilities
Gurobi 11.0 handles select univariate nonlinear functions

But, those can be composed

E.g.: Consider for :

We can formulate it:

introduce auxiliary variables 

add constraints , , , 

Feasibility tolerances!

x ≥ 0

f (x) = + ln(x + ) ≤ 21 + x2‾ ‾‾‾‾‾√ 1 + x2‾ ‾‾‾‾‾√

u, v, w, z ≥ 0
u = 1 + x2 v = u‾√ w = x + v z = ln(w)

f (x) = v + z

Caution
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Decomposition leading to large infeasibility

a solution is , .

Now decompose : , , .

And consider:

 ( )

We have 

y = f (x) =
x

sin(x)

x = 0.0001 y = 1.0000000016666666
f (x) u = sin(x) v = 1

u y = x ⋅ v

= 0.0001x⎯⎯⎯

= 0.000098999999833333343u⎯⎯⎯ sin( ) − 6x⎯⎯⎯ 10−

= 10101.010118015167v⎯⎯⎯

= 1.0101010118015167y⎯⎯⎯

😱

− f ( ) ≊ 2y⎯⎯⎯ x⎯⎯⎯ 10−
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Example
Logistic Regression
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