Paul Derbyshire Senior Technical Advisor BearingPoint

Using Optimisation and Genetic Algorithms to Inform Logistics Decisions

October 2023

BearingPoint_®

Content

15Introducing BearingPointLessons Learned26The ChallengeKey Takeaways3Exploring Our Options

Crafting the Solution

A story of **unity**

The unique BearingPoint ecosystem. One firm. Three business units – with distinct offerings and models – focused on their own market and together providing technology-enabled consulting. One joint venture.

Our year in **numbers**

Numbers only tell part of a story, but they show how far we've come. In 2022, we exceeded our own predictions and grew stronger with every step.

The Challenge

What were we being asked to solve?

Setting the scene

A major grocery and general merchandise retailer

Significant growth

Multiple product types and temperature regimes across the product portfolio

- Manually Handled & Automation Handled Products
- Chill / Fresh
- Frozen
- Ambient
- Temperature sensitive

Designing a **new automated DC** to service stores and provide elements of **hub distribution**

Serving hundreds of stores

The Challenge:

Create a schedule that meets store service requirements with optimised fleet and automation usage

Create a schedule that meets store service requirements, optimises fleet and maximises use of automation

Optimising across multiple related functions

Create a cost optimised schedule for key activities for peak and average days. Taking into consideration:

In order to be effective and to maximise the return on the investment in automation the whole site needs to operate as a single, inter-linked, holistic entity (akin to a manufacturing production plant)

The size and complexity of the challenge

Creating a feasible schedule within the constraints of the site design is highly complex

- There are many competing factors to consider and test at the same time
- Each "decision" impacts processes and capacities before and after
- There may be a number of possible solutions

Hundreds of stores

Multiple store delivery slots

8 product types

- Fleet size and mix
- Site constraints
- Time granularity of 15 mins

There could be 10 million+ variables in this problem

Exploring Our Options

What options did we look at?

What approaches did we consider?

		The Good	The Less Good
Ŏ.	Single MIP Optimisation model	 Deals with everything in a single MIP model. Conceptually more straightforward Does not require additional functions to assemble sub models 	 The size of the problem! The number of variables and constraints, based on previous examples of MIPs we'd run for similar logistics models
	A heuristic backward-scheduling model	 Potentially quicker to build, easier to build in specific rules of thumb Would require some level of simplification 	 How do we choose the first delivery schedule and vehicle type? The number of variables and rules would still be significant to manage
Q.	A backward-scheduling model inside a harness	 Allows us to evaluate multiple delivery schedules and vehicle types as starting points for the backward schedule 	 Which type of harness? Genetic Algorithm? Reinforcement Learning?
Q.	A backward-scheduling model inside a Genetic Algorithm harness	 Allows us to parallelise the optimisation of multiple delivery schedules Ease of use 	 Convergence can be slow due to chromosome length

Using a chromosome to represent a schedule

A chromosome made up of multiple genes

Each gene in the chromosome codifies

Delivery time Store number

An alternative approach using genetic algorithms

Using nature's way to evolve to the best solution

Crafting the Solution

What did this look like for us?

Infrastructure used

16 Optimisation and Genetic Algorithms

Some key facts

Chromosome population

96

Generations Run
Up to
20

MIP binary variables

... before costs convergence

MIP constraints

~30k

MIPs used per Chromosome

5-14

To cover functional areas and product types

Speed Up to 33 MIPs

per minute

16 Chromosomes in parallel

Sample scenario modelling

Key Outputs

24:00

- Optimal timings for each activity required to get all orders to stores
- The number of colleagues required on each shift to complete work
- Optimal delivery vehicle type mix and number required
- Identified potential future peak day bottleneck areas
- Clear indication of how store delivery timings impact DC activity and DC labour requirements

Key Takeaways

BearingPoint.

Mary Mary

Lessons learned

Optimising the end-to-end operation in small time periods **is complex**

Genetic algorithms are a great way to parallelise an optimisation(s)

A single **complex MIP** can be **traded for multiple MIPs** with a Genetic Algorithm but at the **cost of convergence** time

Iterative building and testing worked well. **Start with shorter chromosomes and build up from there**

There's always a way to get to the answer!

Key takeaways

3 key themes

Genetic Algorithms

Are a great approach to solving large scale problems. Combining with MIP can speed up the evolution

Break the problem down Assess ways in which functional areas can be optimised and combined

Parallel running Make use of the parallel run capability afforded by Genetic Algorithms

