Gurobi 11.0 Every Solution, Globally Optimized

What's New in Gurobi 11.0

December 2023

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

LP Improvements MIP Improvements Global MINLP Additional features APIs: Java & Gurobipy Enhancements Dynamically Distributed Tuning Cluster Manager and Compute Server Enhancements

Linear Programming

GUROBI OPTIM

Performance Summary Gurobi 10.0 vs. Gurobi 11.0 – Continuous Convex Models

problem class	speed-up (>1s)	speed-up (>100s)
LP (concurrent)	0.7%	1.2%
LP (barrier)	2.0%	4.1%
LP (primal simplex)	3.1%	9.3%
LP (dual simplex)	0.3%	1.9%
QP	1.3%	*
SOCP	40.6%**	*

Too few hard QP and SOCP models to measure performance *

** Includes performance bug fix for dense cone handling

LP Performance Evolution

Default settings:

- Gurobi 1 4: dual simplex
- Gurobi 5+:
- concurrent LP

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPUE3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 2574 models: - 225 discarded due to inconsistent answers - 77 discarded that none of the versions can solve - speed-up measured on >100s bracket: 596 models

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

SolutionTarget Parameter

- Introduced in Gurobi 10.0.0 as undocumented parameter
- Fully documented and implemented in all APIs in Gurobi 11.0
- SolutionTarget:
 - -1: automatic (equal to SolutionTarget=0)
 - 0: obtain optimal basic solution
 - 1: obtain optimal (not necessarily basic) solution
- Better performance, as certain steps can be skipped:
 - Crossover after barrier solve
 - Unfolding after symmetry folding reduction

SolutionTarget Parameter

GUROBI OPTIMIZATION

Performance

- Gurobi 10.0:
 - SolutionTarget=1 basically equivalent to Method=2 Crossover=0
- Gurobi 11.0:
 - Supports concurrent LP with barrier without crossover
 - Gradient Boosted Tree decides whether to use pure barrier or concurrent LP
- Performance improvement vs. Gurobi 10.0:
 - 23% faster overall (46% on >100sec models)*

Concurrent LP Algorithm Parameters

Gurobi 10.0

- Method
 - -1: automatic
 - 0: primal simplex
 - 1: dual simplex
 - 2: barrier
 - 3: non-deterministic concurrent LP
 - 4: deterministic concurrent LP
 - 5: deterministic concurrent simplex

Gurobi 11.0

• Method

- -1: automatic
- 0: primal simplex
- 1: dual simplex
- 2: barrier
- 3: non-deterministic concurrent LP
- 4: deterministic concurrent LP
- 5: deterministic concurrent simplex (deprecated)
- ConcurrentMethod
 - -1: automatic
 - 0: barrier/dual/primal
 - 1: barrier/dual
 - 2: barrier/primal
 - 3: dual/primal

Mixed Integer Programming

GUROBI OPTIMIZATIO

Performance Summary Gurobi 10.0 vs. Gurobi 11.0 – Mixed Integer Convex Models

problem class	speed-up (>1s)	speed-up (>100s)
MILP	8.6%	12.4%
MIQP	12.8%	22.8%
MIQCP	9.2%	18.2%

MILP Performance Evolution

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPUE3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 7766 models: - 714 discarded due to inconsistent answers - 2124 discarded that none of the versions can solve - speed-up measured on >100s bracket: 2892 models

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

MIP Performance Improvements

Many small improvements that add up (1/2)

• Presolve:

- Improved propagation in probing (0.6%)
- Improved lifting sequence in probing (0.7%)
- Improved work tracking in probing (0.3%)
- Discard duplicates from clique table, collect substitutions (0.7%)
- Better handling of significant model size reductions (1.3%)
- Node presolve:
 - Work limit adjustment in domain propagation (0.3%)
 - Better numerics in domain propagation (0.3%)
 - Earlier updates of global bounds from reduced cost fixing (2.1%)
- Branching:
 - GMI cut scores for branching variable selection (0.3%)
 - Propagated pseudo cost scores for branching variable selection (1.0%)

MIP Performance Improvements

Many small improvements that add up (2/2)

• Cuts:

- Separate higher rank knapsack cover cuts (1.0%)
- Improved clique cut separation (0.6%)
- Aggressive constraint disaggregation cuts (0.8%)
- Improvements in parallel root cut loops (0.4%)
- More aggressive sub-MIP cuts (1.5%)
- Mixing Path Cuts (1.2%)
- Symmetry:
 - Detect and exploit symmetry earlier at root node (0.9%)
 - Weak symmetry cuts (0.9%)
- Other:
 - Improved conflict constraint selection (0.8%)
 - Improved sorting methods (0.4%)

GUROBI OPTIMIZATION

Mixing Path Cuts

- References:
 - O. Gunluk, Y. Pochet: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001). https://doi.org/10.1007/PL00011430
 - P. Christophel: Separation algorithms for cutting planes based on mixed integer row relaxations: implementation and evaluation in the context of mixed integer programming solver software. (PhD thesis) University of Paderborn, 2009, pp. 1-222
- Integrated in our MIR aggregation procedure, using "U-cut procedure" from Christophel
- Parameter MixingCuts with values -1, 0, 1, 2
- Performance impact: 0.5% overall, 1.2% on >100sec models

Nonlinear Programming

Nonconvex MIQCP

Performance Evolution

Comparison of Gurobi Versions (PAR-10)

Time limit: 10000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 1064 models: - 50 discarded due to inconsistent answers - 344 discarded that none of the versions can solve - speed-up measured on >100s bracket: 275 models

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16

Performance Summary Gurobi 10.0 vs. Gurobi 11.0 – Nonconvex Models

problem class	speed-up (>1s)	speed-up (>100s)
nonconvex MIQCP	2.3x	5.8x

Time limit: 10000 sec. Intel Xeon CPUE3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM

Quadratic Objective and Constraints

NonConvex Parameter

- NonConvex:
 - -1: automatic
 - 0: return error if original model has nonconvex Q objective or constraints
 - 1: return error if presolved model has nonconvex Q that cannot be linearized
 - 2: accept nonconvex Q by using a bilinear transformation
- Gurobi 10.0 default (-1): equivalent to 1
- Gurobi 11.0 default (-1): essentially equivalent to 2
- Change can break user code or be at least surprising to users!
- Often, nonconvexity is still a sign of an error in model or data
 - Users now may want to explicitly set NonConvex=1

Nonlinear Constraints

• Gurobi 9.0 and later provide API to define nonlinear functions

• e^x, a^x	<pre>addGenConstrExp(),</pre>	<pre>addGenConstrExpA()</pre>	
• $\ln(x)$, $\log_a(x)$	<pre>addGenConstrLog(),</pre>	<pre>addGenConstrLogA()</pre>	
• $sin(x)$, $cos(x)$, $tan(x)$	<pre>addGenConstrSin(),</pre>	<pre>addGenConstrCos(),</pre>	<pre>addGenConstrTan()</pre>
• x ^a	<pre>addGenConstrPow()</pre>		
• $ax^3 + bx^2 + cx + d$	<pre>addGenConstrPoly()</pre>		

- Gurobi 9.0 10.0:
 - Nonlinear functions are replaced during presolve by a piecewise-linear approximation
- Gurobi 11.0:
 - Can choose to treat nonlinear constraints exactly by a dynamic outer approximation

FuncNonlinear Parameter and Attributes

- Existing general function constraints attributes to control PWL approximation:
 - FuncPieces
 - FuncPieceError
 - FuncPieceLength
 - FuncPieceRatio
- Default behavior of FuncPieces is now to use relative error approach
 - Was mainly restricting total number of pieces in Gurobi 10.0
- New FuncNonlinear attribute to switch between PWL and outer approximation:
 - –1: behavior defined by FuncNonlinear parameter (default)
 - 0: use static PWL approximation
 - 1: use dynamic outer approximation
 - New FuncNonlinear parameter to control default (-1) of attributes:
 - 0: use static PWL approximation (default)
 - 1: use dynamic outer approximation

PWL Approximation vs. Outer Approximation

Relaxation of Nonlinear Functions

- Some convex envelopes are easier to approximate than others
 - Example: y = ln(x), a concave function, $l \le x \le u$
 - Lower envelope is given by secant through $\ln(l)$ and $\ln(u)$
 - Upper envelope is constructed by tangents

Extend to More Complex Functions

If sin is convex within the bounds of $x \dots$

- Upper envelope is given by secant through f(lb) and f(ub)
- Lower envelope constructed by tangents to sin
- Resulting hyperplanes added to LP
- Shaded in red: Relaxation of y = f(x)
- Similar if sin is concave on the domain of x
- Adding more tangents at various points improves the relaxation

Neither Convex Nor Concave

- If sin is neither convex nor concave on the domain of *x*...
- Lower envelope
 - Compute leftmost solution x_0 to $\frac{d}{dx}\sin(x) = \frac{\sin(x) - \sin(lb)}{x - lb}$
 - Computed x_0 defines one tangent
 - Remaining part is convex, use some tangent(s)
- Upper envelope
 - Compute rightmost solution x_1 to $\frac{d}{dx}\sin(x) = \frac{\sin(ub) - \sin(x)}{ub - x}$
 - Computed x_1 defines one tangent
 - Remaining part is concave, use some tangent(s)

"Large" Domains

GUROBI OPTIMIZATION

- Not much to get from the relaxation if domain of *x* is large
- Branching on *x* tightens the relaxation quickly!
- Tighter initial bounds will speed up performance

Spatial Branch and Bound for MINLPs

Branching for MINLPs

Similar to Nonconvex MIQCP

• After solving the convex relaxation, how do we branch on the violated nonconvexities?

Composite Nonlinear Functions

- Gurobi 11.0 can handle selected univariate constraints f(x) = y
 - Trigonometric, power functions, logarithms, exponentials, etc.
 - Use them as building blocks for more elaborate functions
- Example: Suppose we want to model

$$f(x) = \sqrt{\frac{1}{1 + x^2}} + \ln\left(x + \sqrt{1 + x^2}\right) \le 2, \ x \ge 0$$

$$u = 1 + x^2$$

 $z = \ln w$

- We introduce auxiliary variables $u, v, w, z \ge 0$ and constraints as follows:
 - $u = 1 + x^2$, $u = v^2$, w = x + v, $z = \ln w$
 - Then $f(x) \le 2$ can be represented as $v + z \le 2$

Limitations of Gurobi 11 Approach

- Need to model composite nonlinear constraint as a set of
 - linear,
 - quadratic, and
 - univariate nonlinear constraints
- Each individual constraint is subject to feasibility tolerance
- Result could be that composite constraint is violated much more
- Note that most solvers do the same decomposition under the hood
 - Gurobi 11 is only missing the control on the overall composite constraint violation

Limitations of Gurobi 11 Approach

- Example: $y = \frac{x}{\sin x}$
- One solution:
 - x' = 0.0001
 - y' = 1.000000016666666
- Gurobi model: $u = \sin x$, $v = u^{-1}$, $y = x \cdot v$
- One solution:
 - x' = 0.0001
 - u' = 0.00009999999833333343
 - v' = 10000.000016666666
 - y' = 1.000000016666666

- A solution with a violation within a tolerance of 10^{-6} :
 - x'' = 0.0001
 - u'' = 0.000098999999833333343 $u'' = \sin x'' 10^{-6}$
 - $v^{\prime\prime} = 10101.010118015167$
 - y'' = 1.0101010118015167

Violation of 10^{-6} in auxiliary constraint leads to violation of 10^{-2} in composite constraint

Composite function behaves very nicely for $x \in [-2.5, 2.5]$: no numerical issues expected

MINLP Roadmap for Gurobi 12

- Add API to state composite nonlinear functions directly
 - Use composite nonlinear functions for feasibility checks
 - Use composite nonlinear functions for interior point NLP solver
 - Exploit knowledge about composite nonlinear in presolve and for outer approximation
- Improve global MINLP performance
 - Presolve reductions
 - Cutting planes
 - Improve heuristics to better work with nonlinear constraints
 - Better branching variable and split point selection
- Interior point local NLP solver
 - Expose our internal local NLP solver to the user
 - Provides a locally optimal solution
 - Improve performance and robustness of local NLP solver
- Improve numerics

Additional Features

ng n

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 33

Supported Software Versions

- Added support for Xcode 14 on macOS
- Added support for Python 3.12
- Added support for MATLAB R2023b

Copying Models Between Environments

• Copy model from one environment to another

```
c = m.copy()  # regular copy: c in same environment as m
c = m.copy(env)  # new: c is created in environment env
```

- Use case: parallel execution of two optimization runs
- Caveat:
 - Can copy to a remote (Compute Server) model but not from a remote model

Interrupt and Resume with Change of Threads

- Interrupting a solve and then calling optimize() again:
 - Gurobi 10: changes to Threads parameter in between are ignored
 - Gurobi 11: changes to Threads parameter will be obeyed when resuming
- Example use case:

```
m.Params.Threads = 8
m.Params.SoftMemLimit = 4
m.optimize()
if m.status == gp.GRB.MEM_LIMIT:
    m.Params.Threads = 1
    m.optimize()
```


APIs: Java & Gurobipy Enhancements

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 37

Java API

- Java package name is now com.gurobi.gurobi instead of gurobi
 - To follow Java standard naming scheme
- Java package now distributed on Maven Central
 - Most popular Java package repository
 - Similar to PyPI for Python
 - Helps build and deployment processes for Java users

gurobipy: Installation Changes

- Type hints now included in gurobipy
 - No more gurobipy-stubs
- setup.py install is no more
 - Offline installs are possible with pip
 - Hash verification is possible with pip
- conda and pip play nicely together
 - No more duplicate installs
 - Cleaner install for our open-source packages on conda

Гhе	conflict is caused	by:
	The user requested	gurobipy==11.0.0b1
	gurobipy-stubs 2.0	.0 depends on gurobipy==10.*
	The user requested	gurobipy==11.0.0b1
	gurobipy-stubs 1.0	.1.post0 depends on gurobipy==9.5.*

	# Name	Version	Build	Channel
l	blas	1.0	mkl	
l	bottleneck	1.3.5	py311hb9e55a9_0	
l	bzip2	1.0.8	h1de35cc_0	
1	ca-certificates	2023.08.22	hecd8cb5_0	
	gurobi	10.0.3	py311_0	gurobi
	gurobipy	10.0.3	pypi_0	рурі
1	gurobipy-pandas	1.0.0	pypi_0	рурі
l	intel-openmp	2023.1.0	ha357a0b_43547	
	liberr	14 0 6	h9765a3a 0	

gurobipy: Matrix-friendly API Integration

• Callback functions now accept matrix-friendly API objects

```
x_sol = model.cbGetSolution(x)
model.cbLazy(A @ x <= b)</pre>
```

• Numpy-style concatenation (hstack, vstack, concatenate)

```
X = model.addMVar((n, m))
Y = model.addMVar((n, k))
XY = gp.concatenate((X, Y), axis=1) # (n, m+k) MVar
```

• Matrix-friendly indicator constraints (vectorized, broadcastable)

```
z = model.addVar(vtype=GRB.BINARY)
x = model.addMVar(n)
model.addGenConstrIndicator(z, True, A @ x <= b) # MGenConstr ...</pre>
```

gurobipy: Other Notable Mentions

- Any callable object can be a callback
 - Makes callable classes an option for callbacks
 - Avoids the model._attribute workaround
 - Check out the refreshed tsp.py and callback.py examples
- Performance improvements
 - addConstr(A @ x == b) $\sim 2x$ faster for sparse data
 - ~10-20% faster term-based modeling patterns (credit to the Cython developers for that one!)
- Check out the Detailed Release Notes for a complete list

52 c	lass TSPCallback:
53	"""Callback class implementing lazy constraint
54	callbacks, solutions are checked for subtours
55	constraints are added if needed."""
56	
57	<pre>definit(self, nodes, x):</pre>
58	<pre>self.nodes = nodes</pre>
59	self.x = x
60	
61	<pre>defcall(self, model, where):</pre>
62	"""Callback entry point: call lazy constra
63	solutions are found. Stop the optimization
64	user code."""
65	<pre>if where == GRB.Callback.MIPSOL:</pre>
66	try:
67	self.eliminate_subtours(model)
68	except Exception:
69	logging.exception("Exception occur
70	model.terminate()

Dynamically Distributed Tuning

GUROBI OPTIMIZATION

Gurobi Tuner Basics

- Automatic way to handle the huge number of possible parameter configurations when faster performance is needed
- Quickstart Guide
 - Interactive run, either from grbtune executable, or via Python API
 >> m = gp.read("mymodelneedstorunfaster.mps")
 >> m.tune()

```
>>> m = gp.read("mymodelneedstorunfaster.mps")
>>> m.setParam("Heuristics", 0) # Heuristics disabled for all non default tuning runs
>>> m.tune()
```

- More elaborate configurations possible
 - Tuning time limit, number of tuning runs, etc.
- Gurobi runs multiple tuning configurations, recommends best set of parameters

Three Ways of Tuning

Distributed Tuning

- Significantly increase the performance of the tuning tool
- Previously, used a static set of remote workers
- Now, can handle a dynamic set of remote workers
- Remote workers are used for limited amount of time
- Returned such that they are available for other remote jobs
- Number of used remote workers are scaled down and up automatically.

Tuning tool can make use of idle remote workers!

Distributed

Cluster Manager and Compute Server Enhancements

Improved Cluster Manager/Compute Server

Compute Server/Cluster Manager facilitates the deployment and use of optimization services on-premises or on private cloud.

G OP	UROBI TIMIZATION	Gurobi Cluster N	/lanager					💄 jaczynski 🗸
Dashboard	Cluster jobs	A History	/ iobs (200		= 200 jobs	×	Q OPTIMAL	×
Jobs	Queue	J (model)	, (,		~		
Ê	Ð	5	STARTED AT (PDT)	$\underset{(\text{PDT})}{\text{ENDED AT }} \downarrow$	USERNAME	OPTIMIZATION STATUS	VERSION APP	
Batches	History	\otimes	1:07 AM	1:08 AM	heinz	OPTIMAL	11.0.0	LOG
		\odot	Oct 5, 2023 1:07 AM	Oct 5, 2023 1:08 AM	heinz	OPTIMAL	11.0.0	LOG
••		\otimes	Oct 5, 2023 1:05 AM	Oct 5, 2023 1:07 AM	heinz	OPTIMAL	11.0.0	LOG
Accounts		\otimes	Oct 5, 2023 1:03 AM	Oct 5, 2023 1:04 AM	heinz	OPTIMAL	11.0.0	LOG
ː		\otimes	Oct 5, 2023 1:02 AM	Oct 5, 2023 1:03 AM	heinz	OPTIMAL	11.0.0	LOG
Settings		\bigcirc	Oct 5, 2023	Oct 5, 2023	heinz	OPTIMAL	11.0.0	LOG
(?) Help		INFO	TIM	ELINE	CLIENT	STATUS	MODEL	MIP
		ID				Group		
		Job system ID	9-4001-0000-28	ac8U2032664		Job group placement	request	_

New Look and Feel

- User Management
- Cluster Monitoring
- Optimization Job Monitoring

Grade from https://securityheaders.com/

Time Zone Selection and Formatting

From the user menu, select your local time zone or UTC to display date/time

0	Thistory job.	5 (2)
	STARTED AT (UTC)	ENDED AT V
\oslash	Nov 3, 2023 6:32 PM	Nov 3, 2023 6:32 PM
\oslash	Nov 3, 2023 6:31 PM	Nov 3, 2023 6:31 PM

Time zone is indicated in column headers and property tabs

SAML 2.0 Authentication

okta

Google Workspace

In addition to LDAP, v11 adds support for SAML 2.0 user directories for flexible enterprise integration

Dashboard	Cluster jobs	A Histor	v jobs (200)	C.	= 200 jobs	~	Q OPTIMAL	×
\$	Β	- J motor	y jobe (200)		200,000	^	d of thirds	^
Ê	Queue		STARTED AT	ENDED AT	USERNAME	OPTIMIZATION STATUS	VERSION APP	
Batches	History	Ø	1:07 AM	1:08 AM	heinz	OPTIMAL	11.0.0	LOG
*		\odot	Oct 5, 2023 1:07 AM	Oct 5, 2023 1:08 AM	heinz	OPTIMAL	11.0.0	LOG
••		\odot	Oct 5, 2023 1:05 AM	Oct 5, 2023 1:07 AM	heinz	OPTIMAL	11.0.0	LOG
Accounts		\odot	Oct 5, 2023 1:03 AM	Oct 5, 2023 1:04 AM	heinz	OPTIMAL	11.0.0	LOG
		\odot	Oct 5, 2023 1:02 AM	Oct 5, 2023 1:03 AM	heinz	OPTIMAL	11.0.0	LOG
Settings		\otimes	Oct 5, 2023	Oct 5, 2023	heinz	OPTIMAL	11.0.0	LOG
Help		INFO	TIME	LINE	CLIENT	STATUS	MODEL	MIP
		ID			_	Group		

SAML 2.0 Sysadmin Login

Sysadmin user can still login locally, so that access can be managed even in case of problem with SAML 2.0 configuration

http://clustermanager/login/admin

SAML 2.0 Configuration

G OP	UROBI	Gurobi Cluster Manager	
Dashboard	Security	Security Settings	
D obs	System	Authentication	
Eatches		Authentication SAML -	1
Cluster		SAML Configuration ⑦ UPLOAD IDP METADATA CLEAR	
Accounts		Connection	
도 Settings		Identity Provider SSO URL must be defined	
? Help		Identity Provider ID * Identity Provider ID must be defined Bequest Binding *	
		HTTP Redirect	

- Import Identity Provider XML metadata
- Import certificate to verify authentication
- Request binding (POST, Redirect)
- Custom mapping of user attributes (name, email)
- Case sensitivity settings
- Download Service Provider XML metadata

SAML 2.0 Command Line Authentication

~ \$ export GRB_LICENSE_FILE=gurobi.lic ~ \$ grbcluster login --manager https://mycluster --username user@gurobi.com info : Using client license file 'gurobi.lic'

A new authorization request has been created for the user: user <u>@gurobi.com</u> If the browser did not automatically open, use a web browser to open the page: <u>https://mycluster/authorize?device=2ebc97</u>03e If requested, please enter the following device ID code to authenticate: 2ebc9703e

(3) command line returns when authentication is done.

(1) Login request is madeon the command line for aspecific username

(2) Authentication is done in the browser

The device has been authorized, you can close this page.

Improved Database Support

New support of Cosmos DB 4.2 on Microsoft Azure

Create

Azure Cosmos DB for MongoDB

Learn more

Fully managed database service for apps written for MongoDB. Recommended if you have existing MongoDB workloads that you plan to migrate to Azure Cosmos DB.

Existing database support of MongoDB and Amazon DocumentDB

Better Server-Side Limits

- Server-side limits can be enforced by IT as a policy, clients cannot override these limits
- MEMLIMIT:
 - Limits the total amount of memory. If more is needed, Gurobi will fail with an OUT_OF_MEMORY error. Note that it is not possible to retrieve solution information after this termination error.
- SOFTMEMLIMIT
 - Limits the total amount of memory available to Gurobi. If more is needed, Gurobi will terminate with a MEM_LIMIT status code, leading to a graceful exit of the optimization, such that it is possible to retrieve solution information afterwards or (in the case of a MIP solve) resume the optimization.
- TIMELIMIT
 - Limits the total time expended during optimization. If the limit is reached, the optimization will return the TIME_LIMIT status.

Branch and Bound for MILPs

Recap: Nonconvex MIQCP

• Introduce auxiliary variables

 $z_{ij} \coloneqq x_i x_j$

for each product term $x_i x_j$ that appears in some (indefinite) $Q = Q_k$ with $Q_{ij} \neq 0$ Let *S* index all such (i,j) pairs

• A Mixed Integer Bilinear Program is defined as

$$\begin{array}{rclrcl} \min & c^T x & + & d^T z \\ \text{s.t.} & Ax & + & Dz & \leq & b \\ & -x_i x_j & + & z_{ij} & = & 0 & \text{for all } (i,j) \in S \\ & l & \leq & x & \leq & u \\ & & & x_j & \in & \mathbb{Z} & \text{for all } j \in I \end{array}$$

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 57

McCormick Relaxation of Bilinear Constraints

• Mixed product case: $-z_{ij} + x_i x_j = 0_{(l_1, l_2, l_1 l_2)}$

• McCormick lower and upper envelopes:

Feasibility Tolerance for Nonlinear Constraints As Defined in Gurobi 11.0

• Linear and quadratic constraints

y - f(x) = 0

are defined as **feasible within tolerance** $\varepsilon > 0$ if

 $|y - f(x)| \leq \varepsilon$

For nonlinear constraints we use a different definition: •

 $\min\{|y - f(x)|, |x - f_x^{-1}(y)|\} \le \varepsilon$

with $f_x^{-1}(y)$ being the preimage of y closest to x (if it exists)

- Example: $y = 10^x$
 - $x = 10 + 10^{-6}, y = 10^{10}$
 - |y f(x)| = 23025.877

•
$$|x - f_x^{-1}(y)| = 10^{-6}$$

 $|x - f_x^{-1}(y)|$

gurobipy: Debugging Assists

• Disable the default environment (opt-in feature)

- Set environment variable GUROBIPY ALLOW DEFAULTENV=0
- Helps with debugging token & remote job leaks, thread safety

• Less silent failures

- Env.setParam raises an exception for unknown parameters
- Model.getAttr/setAttr raise an exception for variables not in a model
- Too many keys passed to select/sum/prod raises an exception