Adapting Groundwater Abstraction Management Using Mathematical Optimization

Water Corporation, Western Australia

Phillip Meng – Principal, Data Science

Toby Smith – Analyst, Data Science

Who Are We?

Water Corporation

Our Team – Advanced Analytics

Perth Water Supply

The PWS Supplies ~ 300GL Annually to:

- Over 2 Million Customers
- Perth Metropolitan Area
- Export to Goldfields & Agricultural
- Some South West Regional Towns

Integrated System:

• 15 Dams

- 6 Groundwater treatment plants
 - 160 licenced artesian bores (wells)
- 2 Desalination plants

Groundwater Allocation

Groundwater Production

Groundwater Production

Production Schedule

Season	13	14	15	16	17	18	19	20	21	22	23	
Week Starting	21/09/2023 - 12 AM	28/09/2023 - 12 AM	05/10/2023 - 12 AM	12/10/2023 - 12 AM	19/10/2023 - 12 AM	26/10/2023 - 12 AM	02/11/2023 - 12 AM	09/11/2023 - 12 AM	16/11/2023 - 12 AM	23/11/2023 - 12 AM	30/11/2023 - 12 AM	07/12
borefield_id	Ends on: 27/09/2023	Ends on: 04/10/2023	Ends on: 11/10/2023	Ends on: 18/10/2023	Ends on: 25/10/2023	Ends on: 01/11/2023	Ends on: 08/11/2023	Ends on: 15/11/2023	Ends on: 22/11/2023	Ends on: 29/11/2023	Ends on: 06/12/2023	Ends
A												
Quinns												
"Superficial	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	0.00	0.00	7.00	
010	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	0.00	0.00	7.00	
020	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
040	0.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
050	7.00	7.00	0.00	7.00	7.00	0.00	7.00	7.00	7.00	7.00	7.00	
000	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
0110	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q120	7.00	7.00	7.00	7.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q130	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	7.00	7.00	
Q140	0.00	0.00	7.00	7.00	7.00	7.00	0.00	7.00	7.00	7.00	7.00	
0150	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	
Q1/0	7.00	7.00	7.00	7.00	7.00	7.00	0.00	0.00	0.00	0.00	0.00	
Q180	0.00	0.00	0.00	0.00	0.00	0.00	7.00	7.00	7.00	0.00	0.00	
Q190	0.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q200	0.00	0.00	0.00	0.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	
Q35	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q145	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q155	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q165	0.00	0.00	7.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
0,205	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	7.00	
🖂 Yarragadee			2.00	7.00							2.00	
Q137	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Whittords												
Supernicial	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WIID	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
W120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WT40	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
W150	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	
W160	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
VV170	7.00	7.00	0.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	
VV180	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	7.00	
W190	7.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Leederville	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	-
VV 5			/.uu	/.00	/.00	7.00	/.00	/10	/101			

Historical Approach

Basic strategy with Excel

- Run bores (wells) with greatest remaining quota to meet demand
- Tweak groundwater blend reactively to achieve treatable quality limits
- Monitor licences transfer quota or shutdown bores
- Solving strategy is greedy

Functionality

- Manual & time intensive process
- Not responsive to dynamic nature of operations

Data Analytics team proposed using Mathematical Optimisation.

- Initially found it to be a mathematically impossible problem to solve.
 - Over constrained

- "Fluid" business rules were overlooked
- Need to be flexible to achieve "robustness"
 - Build in flexible constraints
 - To achieve an **acceptable** solution.

Optimisation Project

Goal:

- Produce an optimised groundwater blend such that the production volume is maximised, and chemical treatment costs are minimised.
 - For full 52 weeks of water year.
 - Whilst meeting all business rule requirements.

Modelling:

- Business rules into mathematical constraints.
 - Actions, decisions, limits need to be codified.
 - Apply reasonable assumptions and simplifications
- Uses mixed integer programming (MIP)

Stakeholder Engagement

- It was critical to regularly engage with the operational planner to understand the processes and then develop into a model.
- Identification of edge cases and exceptions for constraints was iterative.
- For expansion to regional implementations, meeting directly with staff on the ground identified further processes to model.

Model Development Process

Receive plans, diagrams and documents relating to scheme of interest, and discuss with stakeholders.

Identify objective and discrete rules for constraints.

Prototype on-paper/whiteboard math model that describes the constraint. Check for edge cases to ensure robustness.

Iterate with stakeholder for accuracy of modelled constraints

Implement in code and inspect results.

Feedback with stakeholder if results are logical.

Model Constraints

Fundamentals

State decision variables, transition, auxiliary relationships, time logic.

Bore (Well) event limit

To control the number of starts and stops per bore (well).

Partial week activation

To allow a bore to run for a fraction of a week.

Bore licence and allocation

Limits on the volume a bore (well) and group of bores under a licence can abstract annually.

Water quality

Alkalinity, iron, hardness, total dissolved solids (TDS), turbidity and UV. Mass balance of raw blend per week.

Bore (Well) maintenance and enforced use

To omit or make a bore activation mandatory in the solution schedule.

Water banking

Enable transfer of volume between weeks in the model (virtual storage reservoir).

Demand, weekly and annual limits

Upper and lower limits on the weekly volume, considering a penalty for being below target. Lower bound on total annual volume abstracted, to eliminate unsatisfactory solutions.

Plant capacity

Upper and lower limits on the treatment plant volume capability.

...and more.

Introducing Non-Linearity

Optimise simultaneously:

- The raw water blend,
- AND treatment stream proportion.
- Choosing between treatment processes of different strength and cost.
 - Subject to numerous constraints.
 - This becomes a quadratic (i.e. **non-linear**) constraint we need to solve for.
- This enables the choice of a poor blend with the stronger treatment stream at higher proportions for part of the year, yielding significantly more flexibility and treatment capability.

Treatment Processes (reduce chemical costs)

Mathematical Model

Objective function:

Maximise
$$\sum_{\substack{t \in T, \ b \in B}} R_b a_{b,t} - \delta_t - \sum_{x \in X} k_{x,t} C_x$$

where R_b is the bore (well) flow rate, $a_{b,t}$ whether a bore is active in each week, δ_t the demand deviation penalty, $k_{x,t}$ the volume per stream, C_x the cost per stream.

Subject to:

 $a_{b,t}, b \in B$ (b $f_{b,t}, b$

 $k_{x,t}$ (conti

 $\sum_{t \in T} f_{b,t}$

14

$$\begin{array}{ll} \text{ores}), t \in T(\text{weeks}), a_{b,t} \in \{0,1\} \\ \in B, \quad t \in T, \quad f_{b,t} \in [0,1] \\ \text{S}_{t} (\text{continous}), t \in T \\ \text{nuous}), x \in X (\text{streams}), t \in T \\ \text{S}_{t} (\text{continous}), x \in X (\text{streams}), t \in T \\ \text{S}_{t} (\text{continous}), x \in X (\text{streams}), t \in T \\ \text{S}_{t} \in I \\ \text{S}_{t} + V_{b}^{\text{consumed}} \leq \sum_{k \in K} V_{b,l} \\ \text{S}_{t} = 1 \\ \text{S}_{b,k} R_{b} + V_{b}^{\text{consumed}} \leq V_{b} \end{array}$$

$$\begin{array}{l} \sum_{b \in B} Q_{i,b} R_{b} f_{b,c,t} \leq Q_{i}^{\max} \sum_{b \in B} R_{b} a_{b,c,t} \\ \sum_{b \in B} R_{b} a_{b,c,t} \leq Q_{i}^{\max} \sum_{b \in B} R_{b} f_{b,t} \geq D_{annual} \\ \sum_{b \in B} R_{b} f_{b,t} \leq Q_{i}^{\max} \sum_{b \in B} R_{b} f_{b,t} \\ \sum_{b \in B} R_{b} f_{b,t} \leq 0 \quad (\text{maintenance}) \\ \text{Lower} \leq \sum_{b \in B} R_{b} f_{b,t} \leq Upper \\ \sum_{b \in B} Q_{i} R_{b} f_{b,t}) - \sum_{x \in X} (P_{x,i} * k_{x,t}) \leq Q_{i}^{\max} \sum_{b \in B} R_{b} f_{b,t} \\ \sum_{b \in B} R_{b} f_{b,t} = 1 \quad (enforced) \\ \sum_{x \in X} P_{x,t} = 1 \\ \sum_{x \in X} P_{x,t} = 1 \\ \sum_{b \in B} R_{b} f_{b,t} + o_{t} \geq D_{t} - \delta_{t} \\ \sum_{b \in B} R_{b} f_{b,t} + o_{t} \geq D_{t} - \delta_{t} \\ \end{array}$$

Adapting Groundwater Abstraction Management Using Mathematical Optimization For one treatment plant, the model has over 48,000 constraints and 78,000 variables.

Coding & Solving

Python

- Flexible tool for data processing.
- Automate processes such as input data validation.
- · Management of constraints unique to schemes.

OSIsoft PI

• Collect operational data from time series historian into model to enable dynamic response to system changes.

Gurobi

- Specialist mathematical optimisation solver controlled via Python API.
- Allows models to be solved with advanced techniques.

User Interface

Water Scheduling Model

■ Q Search

Flask

J150 J20 J210 J220 J230 J240 J250 J270 J30 J320 J380 J370 J380 J390 J40 J400 J410 J45 J5

<u>=</u>

Think climate change. Be waterwise.

J50 J80 J70 J90

0.00

1105 1110 1120

Model Solution:

Bore (Well) Activation Schedule (days/week)

17

SELECT SIT	E from dropdow	n here: 🗸 🗸	solution \checkmark	opt	imal	Nee	rahun		Ctrl + click on		5 1/	
20220401_12	25704_Nee_guro	\sim	1 ~	ope		HUCCI	ubup		lowrate view		Days View	
				St	atus	PI	ant					
Season	40	41	42	43	44	45	46	47	48	49	50	
Week Starting	31/03/2022 - 12 AM	07/04/2022 - 12 AM	14/04/2022 - 12 AM	21/04/2022 - 12 AM	28/04/2022 - 12 AM	05/05/2022 - 12 AM	12/05/2022 - 12 AM	19/05/2022 - 12 AM	26/05/2022 - 12 AM	02/06/2022 - 12 AM	09/06/2022 - 12 AM	16/06/20:
borefield_id	Ends on: 6/04/2022	Ends on: 13/04/2022	Ends on: 20/04/2022 E	nds on: 27/04/2022	Ends on: 4/05/2022	Ends on: 11/05/2022	Ends on: 18/05/2022	Ends on: 25/05/2022	Ends on: 1/06/2022	Ends on: 8/06/2022	Ends on: 15/06/2022	Ends on: 2
Quinns												
Superficial												
Q10		7.00	0.00	7.00	0.00	7.00	0.00	0.00	7.00	7.00	0.00	
Q20		7.00	7.00	0.00	0.00	0.00	7.00	7.00	7.00	7.00	7.00	
Q30	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
050		7.00	7.00	7.00	7.00	0.00	7.00	7.00	7.00	7.00	7.00	
0110		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
0120		7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
0130		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q140		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	
Q150		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	
Q170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.31	
Q180	0.00	0.00	4.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Q190	0.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	7.00	7.00	
Q200	0.00	7.00	7.00	7.00	0.00	7.00	0.00	0.00	7.00	7.00	7.00	
🖃 Leederville												_
Q35		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Q145		7.00	0.00	0.00	7.00	0.00	0.00	7.00	0.00	7.00	0.00	
0155		0.00	0.00	0.00	7.00	0.00	0.00	7.00	0.00	0.00	0.00	
0205	7.00	7.00	7.00	7.00	0.00	7.00	7.00	0.00	7.00	0.00	0.00	
Varragadee	0.00	7.00	7.00	7.00	0.00	7.00	7.00	0.00	7.00	0.00	0.00	_
0137	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	
Whitfords												
Superficial												
WT10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WT20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WT40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.68	0.00	
WT50	0.00	7.00	0.00	0.00	0.00	7.00	7.00	7.00	0.00	0.00	0.00	
WT60	7.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WT70	0.00	0.00	0.00	3.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
WT80	0.00	0.00	7.00	0.00	7.00	0.00	7.00	0.00	7.00	0.00	0.00	
VI90	0.00	0.00	0.00	0.00	0.00	7.00	0.00	0.00	0.00	0.00	0.00	
Leederville	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00		.0.00	2.00	~
W15	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	0.00	0.00	5.22	<u>`</u>

Adapting Groundwater Abstraction Management Using Mathematical Optimisation Modelling in Response to Regulatory Changes

Model Solution:

Demand and Bore (Well) Abstraction Schedule

Treatment Stream Proportion Schedule

18

Adapting Groundwater Abstraction Management Using Mathematical Optimisation Modelling in Response to Regulatory Changes

Model Solution:

19

Scheduled Licence Allocation Summary

Abstraction YTD		Remaining Allocation		Demand		Planned Abstraction		Variation	Total Al		bstraction (Planned + YTD)	
273 Consumed Days	23,321 Consumed Allocation (ML)	23,321 92 8,014 insumed Allocation (ML) Days Left Remaining Allocation (ML)			۸L)	7,958 Planned Abstraction (ML)		107 Variation (ML)	31,280 Total Abstraction (ML)		31,335 Allocation (ML)	99.82% Licence Consumed
Abstraction	Planned and Alloca	Summary by	Summary by Licence									
bore ●Q10 ●Q20 ●Q30 ●Q40 ●Q50 ●Q60 ●Q110 ●Q120 ●Q130 ●Q140 ↓ 20K				Groundwater Sub Area	Licence Status	e Abstraction Licence	Abstraction Planned (ML)	Abstraction YTD (ML)	Abstraction Volume (ML)	Licence Volume (Licence_% (ML)	Licence Remaining (ML)
-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Perth North Confined	down	59345	1,233.6	6 2,896.28	4,129.94	4,1	99.47%	22.06			
Ξ 10Κ ·····	Perth North Confined	down	105738	3,602.8	4 11,402.14	15,004.98	15,0	99.81%	28.02			
0K 100631 100636 105738 59345				Quinns Whitfords	down down	100636	2,830.3	8 8,219.76 4 803.15	11,050.14	11,0	050.00 100.00%	-0.14
Abstraction	Abstraction Licence											
Abstraction Planned Allocation Consumed Allocation 4K												
² 2 K ^{0 K} ^{0 K} ^K ^K ^K ^K ^K ^K ^K ^K ^K												
	bore											
% of Allocation and Allocation Remaining by bore and sensitivity												
sensitivity @sensitivity_1 @sensitivity_2 @sensitivity_3												
100% 91% 91% 99% 88% 99% 94% 96%												

Model Solution:

Water Quality Profiles

20

Adapting Groundwater Abstraction Management Using Mathematical Optimisation Modelling in Response to Regulatory Changes

Gurobi Solver

- Originally we used a free solver
 - Unable to solve our annual model for more than 3 months of an annual plan!
- Gurobi was purchased in 2020 able to solve the model most of the time.
- Performance tuning and upgraded versions of the solver can now get the models to solve in the order of minutes – some of our most complex now to the order of seconds.
- We now are using Gurobi for other projects and provide a user interface to run the optimisation model.

Model Formulation Issues

22

Originally our model had a weak, unnecessarily large formulation. This simplified some constraints but came with big performance issues.

> We re-modelled, simplifying our decision variables. We introduced new auxiliary variables to help with complex logic and the result was a big performance improvement.

Don't be scared to try different model formulations

Model Performance Tuning

Initial tuning from learning materials and experience only got us so far

Used literature and documentation to inform how to improve

24

The **Parameter Tuning Tool** from Gurobi was a big help

Identified important parameters Created parameter presets for individual models

Troubleshooting Infeasibility

IIS – Irreducible Inconsistent Subsystem

Feasibility Relaxation Constraint Hunting (old way)

Easy to understand infeasibility	Developer analysis to determine the "offending	In built Gurobi tools to determine specific violated	Guess and check, turn constraints on / off in the
Pre-processing check,	constraints" Often will identify the subset	constraints.	model.
Necessary as the number of	to analyse further.		
inputs is extensive.			

As model has developed, infeasibility troubleshooting is less of an issue – we understand the model sensitivity more closely, and have more advanced tools to help diagnose.

Further Work and Models

Related models

- Planning scenarios for asset sensitivity
- Groundwater bore (well) combination and timing for intra-day operation
- Water transfer and production model
- Hydraulic consideration into bore (well) activation selection
- Improve production demand forecasting
 Other projects
- Energy contract optimisation

Outcomes and Benefits

27

Questions?

There are many people to thank who have been involved with our project since 2019, with special mention to:

- Amanda de Azevedo Marques
- Amanda McGillivray
- Christina Burt
- Kaveh Azizian
- Mike Canci

Adapting Groundwater Abstraction Management Using Mathematical Optimization