
Tips and tricks for optimal scheduling

Thank you for joining us. We will be starting shortly.

Welcome to the webinar

Tips and tricks for optimal scheduling

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Speaker introduction

Dr. Nicole Taheri

• Consultant at End-to-End Analytics

• PhD in Computational and

Mathematical Engineering from

Stanford University

• Extensive experience applying

operations research and mathematical

modeling methods to find optimal

solutions in a wide range of applications

• Work has centered around analyzing

complex data to transform data insights

into actionable recommendations that

improve business processes

1 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

End-to-End Analytics

We partner with our customers to solve complex business

challenges bringing the right balance of management

consulting, analytics and technology.

Consulting Analytics Technology

Management consulting
focused on business strategy

and process adoption

Robust yet practical
analytics to answer the

hardest questions

Right-sized technology
tailored to enable your

business needs

• Company: Founded 2005, based in Palo Alto, CA

• Team: 60+ professional staff, ∼20 PhDs from major universities,
resources in CA, MI, MA, Brazil, Peru, Hong Kong, and China

• Work: Over 75 clients for more than 700 projects to date, 30+ published
articles, more than 15 patents

2 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Agenda

• Overview of scheduling problems
• Sample problem

• Solving with Gurobi
• Modeling & Formulation
• Implementation in Gurobi (Python)
• Useful features for defining constraints

• Special-ordered sets (SOS)
• General constraints: MAX, AND, OR, and INDICATOR

• Parameter tuning

• Wrap up & Questions

3 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Scheduling problems

Definition

Determine the time periods in which to schedule a set of events

to optimize a chosen objective

Examples include:

• Job shop scheduling (assigning jobs to machines in order to

minimize makespan)

• Scheduling airline flights

• Assigning nurses to shifts in a hospital

4 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Scheduling problems

Finding an optimal schedule is a combinatorial optimization

problem that is NP-complete.

• An optimization problem consists of:
• Objective
• Constraints
• Decision variables
• Input data/parameters

• A Mixed-Integer Progam (MIP) is optimization problem with

a mix of integer and continuous decision variables
• Scheduling decision variables are binary, either 0 or 1
• The characteristics of the constraints determine if the

problem is a linear or non-linear program

Scheduling problems can be formulated as a mixed-integer

program and often solved in reasonable time with an

optimization solver like Gurobi.

5 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Sample problem

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Sample scheduling problem: The diner

How should the diner staff burger-makers to minimize costs?

Tom Ato has an hourly
rate of $10

Bri Ochebun has an
hourly rate of $15

of burger
makers needed

1 1 1 2 2 2 1 1 1 2 1 1 1 1

8am 9am 10am 11am12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

6 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Sample scheduling problem: The diner

How should the diner staff burger-makers to minimize costs?

Tom Ato has an hourly
rate of $10

Bri Ochebun has an
hourly rate of $15

of burger
makers needed

1 1 1 2 2 2 1 1 1 2 1 1 1 1

$140

$60

Total: $200

8am 9am 10am 11am12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

6 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Sample scheduling problem: The diner

How should the diner staff burger-makers to minimize costs

and make sure all hours worked are consecutive?

Tom Ato has an hourly
rate of $10

Bri Ochebun has an
hourly rate of $15

of burger
makers needed

1 1 1 2 2 2 1 1 1 2 1 1 1 1

$140

$105

Total: $245

8am 9am 10am 11am12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

6 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Sample scheduling problem: The diner

How should the diner staff burger-makers to minimize costs

and make sure all hours worked are consecutive

when an employee can work a max of 11 hours/day?

Tom Ato has an hourly
rate of $10

Bri Ochebun has an
hourly rate of $15

of burger
makers needed

1 1 1 2 2 2 1 1 1 2 1 1 1 1

$110

$150

Total: $260

8am 9am 10am 11am12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm

6 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Characteristics of scheduling problems

Generally, constraints develop from restrictions on:

• consecutiveness of periods in a shift

• maximum and minimum limits on individual assignments

• minimum on overall required resources

• maximum on number of shifts

• simultaneous and nonsimultaneous scheduling

• ordering of jobs or shifts

Gurobi has an MIP solver with many useful features for

modeling and solving scheduling problems

7 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Formulation &
Gurobi Implementation

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Cooking up the formulation

minimize cost

subject to ·each burger-maker must work less than the

maximum hours
·number of burger-makers at any time must be at

least the minimum required

·burger-maker scheduled hours must be consecutive

8 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Cooking up the formulation

Variable Description Type

B ∈ Z number of burger-makers parameter
T ∈ Z number of time periods parameter

r ∈ RB burger-maker hourly rate parameter

ℓ ∈ ZT minimum required hourly workers parameter
u ∈ R maximum daily work hours parameter

s ∈ {0, 1}B×T burger-maker shift schedule decision variable

w ∈ {−1, 0, 1}B×T shift changes intermediary variables

v ∈ {0, 1}B×T shift starts intermediary variables

minimize
∑T

t=1

∑B
b=1 rb · sb,t cost

subject to
∑T

t=1 sb,t ≤ u ∀b max hours
∑B

b=1 sb,t ≥ ℓt ∀t min workers

wb,t = sb,t − sb,t−1 ∀t > 0, b shift changes

wb,0 = sb,0 ∀b
vb,t = max(0,wb,t) ∀t , b shift starts
∑T

t=1 vb,t ≤ 1 ∀b consecutive shifts

8 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Parameters

Variable Description Type

B ∈ Z number of burger-makers parameter
T ∈ Z number of time periods parameter

r ∈ RB burger-maker hourly rate parameter

ℓ ∈ ZT minimum required hourly workers parameter
u ∈ R maximum daily work hours parameter

define parameters

B = 2 # num of burger makers

T = 14 # num of time periods

timeperiods = range(T) # time periods

burgermakers = ["Tom","Bri"] # burger makers

hourly rates = {"Tom": 10,"Bri": 15} # rates

minimum workers = [1,1,1,2,2,2,1,1,1,2,1,1,1,1] # min hourly workers

maximum hours = 11 # max worker hours

9 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Model

Variable Description Type

s ∈ {0, 1}B×T burger-maker shift schedule decision variable

w ∈ {−1, 0, 1}B×T shift changes intermediary variables

v ∈ {0, 1}T×B shift starts intermediary variables

Create a new model

m = Model("diner schedule")

Create variables

s = m.addVars(burgermakers, timeperiods, vtype=GRB.BINARY, name="s")

w = m.addVars(burgermakers, timeperiods, lb=-1, ub=1, name="w")

v = m.addVars(burgermakers, timeperiods, name="v")

10 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Objective

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

s[(b,t)]

Gurobi relies heavily on the tuple. Lists and tuples are both ordered
collections of Python objects, but tuples are immutable– they cannot
be modified once created.

List: x = [3,7,9] Tuple: x = (3,7,9)

11 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Objective

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

[(hourly rates[b]⋆s[(b,t)]) for b in burgermakers for t in timeperiods]

11 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Objective

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

sum([(hourly rates[b]⋆s[(b,t)]) for b in burgermakers for t in timeperiods])

11 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Objective

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

quicksum([(hourly rates[b]⋆s[(b,t)]) for b in burgermakers for t in timeperiods])

11 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Objective

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

Set objective

m.setObjective(

quicksum([(hourly rates[b]⋆s[(b,t)]) for b in burgermakers for t in timeperiods])

, sense=GRB.MINIMIZE)

11 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Bound constraints

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

Add constraints on maximum daily hours

m.addConstrs(quicksum([s[(b,t)] for t in timeperiods]) <= maximum hours \
for b in burgermakers, name="max daily hours")

Add constraints on minimum hourly workers

m.addConstrs(quicksum([s[(b,t)] for b in burgermakers]) >= minimum workers[t] \
for t in timeperiods, name="min workers")

12 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi implementation: Shift constraints

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

Add constraints to count shift starts

m.addConstrs((w[(b,t)] == (s[(b,t)] - s[(b,t-1)]) \
for b in burgermakers for t in range(1,T)), name="shift changes")

m.addConstrs((w[(b,0)] == s[(b,0)] for b in burgermakers), \
name="shift starts init")

m.addConstrs((v[(b,t)] == max (w[(b,t)], 0.0) \
for b in burgermakers for t in range(1,T)), name="shift starts")

Add constraints to place maximums on shift starts

m.addConstrs((quicksum([v[(b,t)] for t in timeperiods]) <= 1 \
for b in burgermakers), name="shift start max")

13 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Fire it up

m.optimize()

> python burgers.py

Optimize a model with 46 rows, 84 columns and 166 nonzeros

Model has 26 general constraints

Variable types: 56 continuous, 28 integer (28 binary)

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [1e+01, 2e+01]

Bounds range [1e+00, 1e+01]

RHS range [1e+00, 1e+01]

Presolve removed 26 rows and 61 columns

Presolve time: 0.00s

Presolved: 20 rows, 23 columns, 70 nonzeros

Variable types: 10 continuous, 13 integer (13 binary)

Found heuristic solution: objective 260.0000000

Root relaxation: cutoff, 6 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 cutoff 0 260.00000 260.00000 0.00% - 0s

Explored 0 nodes (6 simplex iterations) in 0.01 seconds

Thread count was 4 (of 4 available processors)

Solution count 1: 260

Optimal solution found (tolerance 1.00e-04)

Best objective 2.600000000000e+02, best bound 2.600000000000e+02, gap 0.0000%

>

14 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Special ordered sets

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Alternate implementation

minimize
∑T

t=1

∑B
b=1 rb · sb,t

subject to
∑T

t=1 sb,t ≤ u ∀b∑B
b=1 sb,t ≥ ℓt ∀t

wb,t = sb,t − sb,t−1 ∀t > 0,b

wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b∑T
t=1 vb,t ≤ 1 ∀b

Add constraints to count shift starts

m.addConstrs((w[(b,t)] == (s[(b,t)] - s[(b,t-1)]) \
for b in burgermakers for t in range(1,T)), name="shift changes")

m.addConstrs((v[(b,0)] == s[(b,0)] for b in burgermakers), \
name="shift starts init")

m.addConstrs((v[(b,t)] == max (w[(b,t)], 0.0) \
for b in burgermakers for t in range(1,T)), name="shift starts")

Add constraints to place maximums on shift starts

m.addConstrs((quicksum([v[(b,t)] for t in timeperiods]) <= 1 \
for b in burgermakers), name="shift start max")

15 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

I’ll order the special, please

T∑

t=1

vb,t ≤ 1 ∀b

This can be modeled as a Special Ordered Set (SOS) constraint.

There are two types of SOS constraints:

1. Type 1: Given a set of variables, at most one of them can be
non-zero

2. Type 2: Given a set of variables, at most two of them can be
non-zero, and the non-zero values must be contiguous

15 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

I’ll order the special, please

T∑

t=1

vb,t ≤ 1 ∀b

This can be modeled as a Special Ordered Set (SOS) constraint.

There are two types of SOS constraints:

1. Type 1: Given a set of variables, at most one of them can be
non-zero

2. Type 2: Given a set of variables, at most two of them can be
non-zero, and the non-zero values must be contiguous

Linear constraint:
for b in burgermakers:

m.addConstr((quicksum([v[(b,t)] for t in timeperiods]) <= 1))

SOS constraint:
for b in burgermakers:

m.addSOS(GRB.SOS TYPE1, [v[(b,t)] for t in timeperiods])

14 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

General Constraints

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

General constraints

Definition

General constraints allow for easy modeling, and Gurobi will

transform it into the corresponding MIP formulation.

MAX: r = max{x1, . . . , xn, c}

• r will be equal to the maximum value over the set {x1, . . . , xn, c}

MIN: r = min{x1, . . . , xn, c}

• r will be equal to the minimum value over the set {x1, . . . , xn, c}

ABS: r = |x |

• r will be equal to the absolute value of x

AND: r = and{x1, . . . , xn}

• For r , xi binary, r will be 1 if and only if xi = 1 for all i

OR: r = or{x1, . . . , xn}

• For r , xi binary, r will be 1 if and only if xi = 1 for some i

INDICATOR: (y = f)→ (aT x ≤ b)

• For y , f binary, if y = f , then aT x ≤ b must be satisfied

15 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Scrambled with cheese

Bri and Tom are terrific burgermakers, which has made the diner so
popular that it needs two new employees!

Barb Ecuesauce has
an hourly rate of $8

Jack Cheese has an
hourly rate of $8

Bri hires her best friend Barb and her boyfriend Jack, which creates a
couple complications:

• Bri and Jack cannot work at the same time

• Bri wants to only work when Barb is working

16 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Scrambled with cheese

Bri and Tom are terrific burgermakers, which has made the diner so
popular that it needs two new employees!

Barb Ecuesauce has
an hourly rate of $8

Jack Cheese has an
hourly rate of $8

Bri hires her best friend Barb and her boyfriend Jack, which creates a
couple complications:

• Bri and Jack cannot work at the same time

• Bri wants to only work when Barb is working

The following constraint will ensure that Bri only works when

Barb is working and Jack is not working:

s”Bri”,t = AND{s”Barb”,t ,1 − s”Jack”,t} ∀t

16 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Gurobi makes it over easy: AND

s”Bri”,t = AND{s”Barb”,t , 1 − s”Jack”,t} ∀t

x1 = and{x2, x3, x4} ←→ m.addGenConstrAnd(x 1, [x 2, x 3, x 4])

Gurobi implementation:

Define opposite of the schedule

not s = m.addVars(burgermakers, timeperiods, name="not s")

m.addConstrs((not s[(b,t)] == (1 - s[(b,t)]) \
for b in burgermakers for t in timeperiods), name="not s c")

Add constraints to enforce policies

for t in timeperiods:

m.addGenConstrAnd(s[("Bri",t)], [s[("Barb",t)], not s[("Jack",t)]])

17 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Over hard: INDICATOR

s”Jack”,t = 1 =⇒ s”Bri”,t = 0 ∀t

y = f → a · x = b

l

m.addGenConstrIndicator(y, f, a*x, sense=GRB.EQUAL, rhs=b)

Gurobi implementation:

Add constraints to enforce policies

for t in timeperiods:

m.addGenConstrIndicator(s[("Jack",t)], 1, \
s[("Bri",t)], sense=GRB.EQUAL, rhs=0.0, name="policy")

18 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Would you like to place an order?

Opening is the worst part of working at a diner, and Bri wants to

make sure she never has to do it.

The following constraints will ensure Bri’s shift is not the first:

zb = max{(t · vb,t) ∀t} ∀b shift start time

z”Bri” ≥ zb ∀b shift ordering

Gurobi implementation:

Define shift start times

z = m.addVars(burgermakers, name="z")

for b in burgermakers:

m.addGenConstrMax(z[b], [t*v[(b,t)] for t in timeperiods])

Add constraint to make sure Bri never has to open

m.addConstrs(z["Bri"] >= z[b] for b in burgermakers)

19 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Parameters

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Parameters

In the words of Gurobi

“While you should feel free to experiment with different parameter
settings, we recommend that you leave parameters at their default
settings unless you find a compelling reason not to.”

Considering the above, these parameters could be useful for scheduling:

• MIPFocus: modifies solution strategy for MIPs
• 0 : balance between finding feasible and optimal solutions
• 1 : to find feasible solutions quickly
• 2 : to focus on proving optimality

• 3 : to focus on progressing the objective bound

• IntFeasTol: tolerance for how close an integer variable has to
be to an integer (finite precision)

• MIPGap: Relative MIP gap
• MIPGapAbs: Absolute MIP Gap

Gurobi has an automated Parameter Tuning Tool that searches for the
parameter settings to improve performance.

m.tune()

20 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Thanks!

Questions

Please use the questions box on your GoToWebinar
panel to submit questions

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Next Steps

• If you haven’t already done so, please register for an

account at www.gurobi.com.

• For questions about Gurobi pricing contact:

sales@gurobi.com or sales@gurobi.de.

• A recording of this webinar, including the slides and code,

will be available in one week.

21 / 20

www.gurobi.com
mailto:sales@gurobi.com
mailto:sales@gurobi.de

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Appendix

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Ugh, managers

Tom and Bri want to make sure that the quality of the burgers doesn’t

decline, so one of them wants to be working at all times.

The following constraints will ensure that either Tom or Bri is
always working:

ŝt = OR{s”Bri”,t , s”Tom”,t} ∀t

ŝt = 1 ∀t

21 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Ugh, managers

Tom and Bri want to make sure that the quality of the burgers doesn’t

decline, so one of them wants to be working at all times.

The following constraints will ensure that either Tom or Bri is
always working:

ŝt = OR{s”Bri”,t , s”Tom”,t} ∀t

ŝt = 1 ∀t

Gurobi implementation:

Add constraints so that either Tom or Bri is always working

s hat = m.addVars(timeperiods, name="s hat")

for t in timeperiods:

m.addGenConstrOr(s hat[t], [s[("Bri",t)], s[("Tom",t)]])

m.addConstrs(s hat[t] == 1 for t in timeperiods)

20 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Short shifting

Jack was getting short shifts and complained incessantly. After

much ado, Bri and Tom agreed to a minimum shift length.

Previous shift constraints:

wb,t = sb,t − sb,t−1 ∀t > 0,b
wb,0 = sb,0 ∀b

vb,t = max(0,wb,t) ∀t ,b

The following constraints ensure every shift is at least k hours:

v̂b,t = max(0,−wb,t) ∀t ,b shift end

v̂b,T = sb,T ∀b

zb = max{(t · vb,t) ∀t} ∀b start time

ẑb = max{(t · v̂b,t) ∀t} ∀b end time

zb − ẑb ≥ k ∀b minimum shift length

20 / 20

c© 2018 Gurobi Optimization, Inc. and End-to-End Analytics

Short shifting
The following constraints ensure every shift is at least k hours:

v̂b,t = max(0,−wb,t) ∀t , b shift end

v̂b,T = sb,T ∀b

zb = max{(t · vb,t) ∀t} ∀b start time
ẑb = max{(t · v̂b,t) ∀t} ∀b end time

zb − ẑb ≥ k ∀b minimum shift length

Gurobi implementation:
Define shift end times

m.addConstrs(v hat[(b,t)] == max (-w[(b,t)], 0.0) \
for b in burgermakers for t in range(0,T-1))

Define start and end times, and the final shift end

for b in burgermakers:

m.addConstr(v hat[(b,T)] == s[(b,T)])

m.addGenConstrMax(z[b], [t*v[(b,t)] for t in timeperiods])

m.addGenConstrMax(z hat[b], [t*v hat[(b,t)] for t in timeperiods])

Add constraint on minimum shift length

m.addConstrs(z[b] - z hat[b] >= k for b in burgermakers)

20 / 20

