Introduction to Performance Tuning

Jennifer Locke Manager, Technical Account Management, Americas

The Optimization Workflow

- The real-world problem instance is usually derived from a specific planning problem.
- A configurable model generator is used to build the model instance using data sources.
- Gurobi is used to find an optimal solution of the model instance.
- The solution is transferred back to the planning system for further analysis.
- The cycle repeats until a satisfying realworld solution has been found.

Image: http://optano.net/en/production-planning/

Agenda

01 Tuning opportunities

Performance starts with collecting the data. What other things should be considered to make an application fast?

02 Improving Gurobi performance

How can you change the solver behavior to increase Gurobi's performance?

03 Performance tuning

Best practices, a walk through some examples, and how to use Gurobi's automated tuning tool.

Tuning opportunities

Consider different areas of your application

	System architecture	Hardware	Data access
Overview	Model construction	Memory	Network communication overhead
	Performance variability	Numerical issues	Benchmarking and profiling

þ

System Architecture

- Performance problems can arise in different parts of the system architecture
- Measure runtimes yourself in every part of the process
 - Processing input data
 - Model building
 - Model solving
- Keep log files
- Optimization needs physical CPU and memory resources

 > be aware of competition

Hardware considerations

- What is the best hardware to solve an optimization problem?
 - Answer: "It depends"
- For a large MIP model, you'll get the best performance from a system with
 - The fastest possible clock rate and
 - 4 channels per socket of the fastest available memory.
- There is no hardware recommendation for all models.

You are welcome to submit a request on our portal <u>support.gurobi.com</u> to discuss your specific models.

Data Access

- Common support request
 - "The optimization process is taking too long"
 - Reason: Model building outside of Gurobi takes 30 minutes
 - Model solving takes only a few seconds
- Inefficient data access is the most common reason for slow model construction
 - Long lookup times
 - Insufficient caching / redundant queries
 - Single elements instead of batch processing
- If you would remove all Gurobi API calls, how long would it take?

GUROBI OPTIMIZATION

Is Gurobi the bottleneck?

- Run your program with Gurobi parameter Record=1
 - Produces a recording000.grbr file
- Then replay the recording file:
 - gurobi_cl recording000.grbr
- Produces runtime summary at the end...

```
*Replay* Gurobi API routine runtime: 2.12s
*Replay* Gurobi solve routine runtime: 23.92s
```

Model Construction

- Are you using the most efficient way to build expressions?
- Look for: bottleneck via a code profiler or measure yourself
- Object-oriented interfaces are thin layer upon C matrix interface
- Building a set of variables and constraints
 - New variables/constraints put in a lazy update queue
 - Queue flushed when you optimize()
 - Use Gurobi model objects for later queries; avoid looking up elements by their names

Memory

- Insufficient memory can destroy performance
 - Virtual memory via disk is far slower than RAM
 - Parallel optimization requires more memory
- Look for: memory use via system monitor tools on computer
- Helpful parameters
 - Decrease number of threads
 - Set NodefileStart to store MIP node info on disk
 - Only helpful when solving a MIP that requires many nodes!
 - <u>SoftMemLimit</u>
- Memory is cheap

Network communication overhead

- When using Gurobi Cloud or Compute Server:
 - Be aware of potential network issues when retrieving data
 - Latency, bandwidth and stability
- Latency can become an issue when a lot of messages are sent over the network
 - Typically not an issue, due to lazy update approach
- Compute Server statistics in the log file:

Compute Server communication statistics: Sent: 8.3 MBytes in 244 msgs and 0.76s (10.92 MB/s) Received: 7.2 MBytes in 304603 msgs and 1.53s (4.71 MB/s)

• Use the RS command : grbcluster node latency

ADDRESS	LATENCY	NBERR
serverl	1.12813ms	0
server2	1.218103ms	0

Performance variability

- MIP solvers often need to "flip a coin" to decide what to do next
 - Gurobi uses a pseudo-random number generator with a seed
 - Playing with the seed parameter helps to determine the impact of random algorithmic choices
- Performance variability is intrinsic to MIP
 - Some models behave pretty stable
 - There are also highly pathological models which solve in a fraction of a second for some seeds and cannot be solved within days for other seed values.
- Bottom line: Always pay attention to performance variability when benchmarking models
 - Use different instances of the same model type
 - Run the same model instance with different random seeds

Performance variability

Changes

Numerical Issues

- Numerical problems within models can affect
 - Solution time
 - Solution quality
- It is often very helpful to reformulate and/or rescale the model.
- We don't cover this topic in this presentation.
- We provide a <u>numerics guide</u> and a <u>webinar</u> about this topic.

Profiling & benchmarking

- Model initialization and solution retrieval
 - Export MPS file from API and run it with gurobi_cl
 - See if solution times are much faster
 - Or use Record feature
- What algorithmic part is the bottleneck?
 - Presolve
 - Root relaxation
 - Root node of MIP
 - Other nodes of MIP
 - Log shows time spent in presolve, LP relaxation, MIP root, nodes
- Use the logs to identify the bottleneck

Improving Gurobi performance

How to modify the solver behavior through parameter settings

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

A look at performance tuning from our Experts team

11. Bobby has four dimes. Amy has 30 pennies. Which child has more money?

How do you know? Show your thinking.

*

Source: https://www.boredpanda.com/funny-math-answer-drawing-bobby-show-your-thinking/?utm_source=google&utm_medium=organic&utm_campaign=organic

How Gurobi works

Understand how Gurobi proves optimality

Solver process

- Gurobi consists of many algorithms that all work together
- Parameters are available to influence algorithms
- Key question for each block:
 - Do we spend much time on it?
 - Is it worth the time?
 - How can we change it?

Group	# Parameters	Example
Presolve	15	Presolve
Simplex	8	SimplexPricing
Barrier	6	Crossover
MIP	34	MIPFocus
MIP Cuts	25	CutPasses
Other	27	Threads
Termination	11	TimeLimit

Visualize the path to optimality

CASE 1:

- Lower bound seems OK
- Cuts + initial B&B do most of the job
- Feasible solutions seem to be a struggle
- Change solver parameters
- Generate your own solution
- Consideration reformulating the model

CASE 2:

- Upper bound seems OK
- Internal heuristics + user input do the job early on
- Lower bound is horrible!
 - Cuts
 - More pre-processing
 - Reformulate

CASE 3:

- Quick bounds and solutions
- Quick depends on the scale!
- Tail-off effect is fairly common
- Termination criteria is key
 - How precise is my data
 - How precise is my model
 - Better than current approach is usually enough

Improving Gurobi performance

How to modify the solver behavior through parameter settings

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 46

Parameters Version 10.0 has	Termination and Tolerances	Simplex and Barrier	MIP and Cuts
89 parameters related to performance	Presolve and Multiple Solutions	Distributed algorithms and Tuning	Other Cloud, Compute Server, Cluster Manager, WLS, and Token Server

Presolve

Tradeoff

- Spend time up front with hope of simplifying model
- Primary control: Presolve parameter
 - Reduce if spending too much time up front
 - Increase to hope to get a simpler model

Additional parameters for fine-grain control

- PrePasses
- Aggregate
- AggFill
- PreSparsify
- PreDual
- PreDepRow

4 parameters to control SOS formulations

Continuous algorithms

Defaults for continuous optimization

Notable continuous parameters

Integer model – What makes it difficult?

01 Time to solve LP/QP relaxation?

Adjust LP parameters

02 Is the bound moving?

Adjust cutting plane generation Improve node throughput **03** Are feasible solutions found?

Increase heuristics Change branching strategy

Additional helpful MIP Parameters

VarBranch

Change branching strategy using

Cuts

Fine granular control over 21 different cut types or control all at once using Cuts and CutPasses parameter

Heuristics

Limits the overall amount of time spent in heuristics

Find a first feasible solution

- NoRelHeurTime
- PumpPasses
- MinRelNodes
- ZeroObjNodes

Performance tuning

Consider different areas of your application

The art of parameter tuning

Parameters change the runtime of the problem. This means we need

runtime information to judge what to choose!

The craft of parameter tuning

Multiple random seeds

Validate result on multiple models

Don't overtune

Preferably use parameters that do not "count" something (e.g. CutPasses)

• Don't over-tune parameters

- Default values are carefully selected, based on thousands of models
- Avoid setting parameters unless they produce a big improvement across multiple test models
- "Less is more"
- Don't assume parameters that were effective for another solver are ideal for Gurobi
- If there is a new Gurobi major release, try the defaults first

Manual tuning

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 59

- A model takes 7-8 minutes to solve to a MIP gap below 0.1%, with some runs taking over 15 minutes.
- Customer would like to reduce this as much as possible, ideally to 1-2 minutes.

	Node	es	Ĩ.	Cu	rrent	Nod	e	Objec	tive Bound	ls	W	ork
E	xpl Ur	nexpl	Î.	Obj	Depth	In	tInf	Incumbent	BestBo	Gap	It/No	de Time
	0	0	-2	.130e	+07	0	385	-	-2.130e+07		-	18s
	0	0	-2	.130e	+07	0	563	-	-2.130e+07	-	:	21s
	0	0	-2	.130e	+07	0	552	-	-2.130e+07		-	22s
	0	0	-2	.130e	+07	0	545	-	-2.130e+07		-	22s
	0	0	-2	.130e	+07	0	646	-	-2.130e+07		-	25s
	0	0	-2	.130e	+07	0	676	-	-2.130e+07	-	-	26s
	0	0	-2	.130e	+07	0	568	-	-2.130e+07		-	28s
	0	0	-2	.130e	+07	0	637	-	-2.130e+07		-	28s
	0	0	-2	.130e	+07	0	637	-	-2.130e+07		-	28s
	0	0	-2	.130e	+07	0	623	-	-2.130e+07			30s
	0	0	-2	.130e	+07	0	645	-	-2.130e+07		-	31s
	0	0	-2	.130e	+07	0	637	-	-2.130e+07		-	31s
	0	0	-2	.130e	+07	0	622	-	-2.130e+07		-	31s
	0	0	-2	.130e	+07	0	624	-	-2.130e+07	-	-	32s
	0	0	-2	.130e	+07	0	624	20770	-2.130e+07		1.75	32s
	0	0	-2	.130e	+07	0	603	-	-2.130e+07	-	-	33s
	0	0	-2	.130e	+07	0	616	-	-2.130e+07		-	34s
	0	0	-2	.130e	+07	0	612	-	-2.130e+07	-	-	34s
	0	0	-2	.130e	+07	0	620	-	-2.130e+07	-	-	35s
	0	0	-2	.130e	+07	0	628	-	-2.130e+07	-	-	35s
	0	0	-2	.130e	+07	0	628	S.T.	-2.130e+07	-	-	36s
	0	0	-2	.130e	+07	0	616	-	-2.130e+07		-	37s
	0	0	-2	.130e	+07	0	606	-	-2.130e+07		-	38s
	0	2	-2	.130e	+07	0	605	-	-2.130e+07		-	46s
	27	32	-2	.130e	+07	6	632	-	-2.130e+07		102	50s
	64	103	-2	.130e	+07	13	613	-	-2.130e+07		73.3	57s
	102	156	-2	.130e	+07	21	606		-2.130e+07	-	63.7	66s
	155	284	-2	.130e	+07	29	604	-	-2.130e+07	-	79.3	83s
	283	461	-2	.131e	+07	51	577	-	-2.130e+07		91.0	110s
	460	636	-2	.131e	+07	83	505	-	-2.130e+07	-	94.0	139s
	635	973	-2	.131e	+07 1	.09	525	-	-2.130e+07	-	100	169s
	972	1488	-2	.131e	+07 1	.65	420		-2.130e+07	-	98.2	196s
-	1487	1990	-2	.131e	+07 2	61	333	-	-2.130e+07	-	99.3	219s
	1989	2548	-2	.131e	+07 3	72	226	-	-2.130e+07	-	100	241s
1	2548	3135	-2	.131e	+07 4	93	251	-	-2.130e+07	-	95.4	262s
	3135	3791	-2	.132e	+07 6	15	199	-	-2.130e+07	-	88.4	281s
1	3792	4404	-2	.132e	+07 7	79	226	-	-2.130e+07	-	78.1	300s
4	4408	5082	-2	.132e	+07 9	42	112	-	-2.130e+07	-	72.0	316s
H 4	4896	5078					-2	.13195e+07	-2.130e+07	0.07%	67.2	316s

Case 1:

- Lower bound seems OK
- Cuts + initial B&B do most of the job
- Feasible solutions seem to be a struggle
- Change solver parameters
- Generate your own solution
- Consideration reformulating the model

Try:

- Increase heuristics
- Change branching strategy

MIPFocus parameter

the Gurobi MIP solver strikes a balance between finding new feasible solutions and proving that the current solution is optimal.

- MIPFocus=0 Default
- MIPFocus=1 focus on incumbent, finding feasible solutions quickly
- MIPFocus=2 focus more attention on proving optimality
- MIPFocus=3 to focus on the Best bound

- After using MIPfocus=1
- Solves in four minutes

	Node	es	Curren	nt Nod	e	Obje	ctive Bounds		Wo	rk
1	Expl U	nexpl	Obj Dep	th In	tInf	Incumbent	t BestBd	Gap	It/Nod	e Time
	0	0	-2.130e+07	0	385	-	-2.130e+07	-	_	21s
	0	0	-2.130e+07	0	541	-	-2.130e+07	-	-	24s
	0	0	-2.130e+07	0	530	-	-2.130e+07	-	-	26s
	0	0	-2.130e+07	0	531	-	-2.130e+07	-	-	26s
	0	0	-2.130e+07	0	608	-	-2.130e+07	-	-	28s
	0	0	-2.130e+07	0	631	-	-2.130e+07	-	-	29s
	0	0	-2.130e+07	0	612	-	-2.130e+07	-	-	30s
	0	0	-2.130e+07	0	620	-	-2.130e+07	-	-	33s
	0	0	-2.130e+07	0	631	-	-2.130e+07	-	-	34s
	0	0	-2.130e+07	0	672	-	-2.130e+07	-	-	34s
	0	0	-2.130e+07	0	614	-	-2.130e+07	-	-	36s
	0	0	-2.130e+07	0	617	-	-2.130e+07	-	-	37s
	0	0	-2.130e+07	0	639	-	-2.130e+07	-	-	38s
	0	0	-2.130e+07	0	617	-	-2.130e+07	-	-	39s
Н	0	0			- 3	.40760e+07	-2.130e+07	37.5%	-	92s
Н	0	0			-2	.81400e+07	-2.130e+07	24.3%	-	139s
н	0	0			-2	.81392e+07	-2.130e+07	24.3%	-	139s
	0	2	-2.130e+07	0	614	-2.814e+07	-2.130e+07	24.3%	-	140s
Н	27	32			-2	.80958e+07	-2.130e+07	24.2%	106	142s
н	30	32			-2	.80955e+07	-2.130e+07	24.2%	96.0	142s
	50	76	-2.130e+07	11	592	-2.810e+07	-2.130e+07	24.2%	73.3	145s
Н	116	139			-2	.62917e+07	-2.130e+07	19.0%	113	155s
н	119	139			-2	.61379e+07	-2.130e+07	18.5%	112	155s
	138	350	-2.130e+07	24	551	-2.614e+07	-2.130e+07	18.5%	103	164s
Н	162	350			-2	.61315e+07	-2.130e+07	18.5%	102	164s
Н	213	350			-2	.61254e+07	-2.130e+07	18.5%	105	164s
н	320	350			-2	.61246e+07	-2.130e+07	18.5%	107	164s
	349	558	-2.131e+07	61	512	-2.612e+07	-2.130e+07	18.5%	108	223s
Н	400	558			-2	.58595e+07	-2.130e+07	17.6%	104	223s
Н	452	558			-2	.13529e+07	-2.130e+07	0.23%	105	223s
Н	504	558			-2	.13347e+07	-2.130e+07	0.14%	107	223s
Н	556	558			-2	.13315e+07	-2.130e+07	0.13%	105	223s
Н	557	601			-2	.13152e+07	-2.130e+07	0.05%	105	245s

- After using heuristics=0
- Talks longer to find the first feasible solution than with MIPFocus=1
- Solves in two minutes

	Nod	es	Cu	rrent	Nod	le	Objec	tive Bounds	s	W	ork
	Expl U	nexpl	Obj	Depth	In	tInf	Incumbent	BestBd	Gap	It/No	de Time
	0	0	-2.130e	+07	0	385	-	-2.130e+07	-	-	17s
	0	0	-2.130e	+07	0	541	-	-2.130e+07	-	-	18s
	0	0	-2.130e	+07	0	530	-	-2.130e+07	-	-	18s
	0	0	-2.130e	+07	0	531	-	-2.130e+07	-	-	19s
	0	0	-2.130e	+07	0	608	-	-2.130e+07	-	-	21s
	0	0	-2.130e	+07	0	631	-	-2.130e+07	-	-	21s
	0	0	-2.130e	+07	0	612	-	-2.130e+07	-	-	21s
	0	0	-2.130e	+07	0	618	-	-2.130e+07	-	-	24s
	0	0	-2.130e	+07	0	624	-	-2.130e+07	-	-	24s
	0	0	-2.130e	+07	0	655	-	-2.130e+07	-	-	24s
	0	0	-2.130e	+07	0	617	-	-2.130e+07	-	-	26s
	0	0	-2.130e	+07	0	599	-	-2.130e+07	-	-	26s
	0	0	-2.130e	+07	0	631	-	-2.130e+07	-	-	26s
	0	0	-2.130e	+07	0	601	-	-2.130e+07	-	-	28s
	0	2	-2.130e	+07	0	600	-	-2.130e+07	-	-	29s
	3	8	-2.130e	+07	2	625	-	-2.130e+07	-	223	30s
	129	226	-2.131e	+07	23	551	-	-2.130e+07	-	75.7	37s
	225	447	-2.131e	+07	38	549	-	-2.130e+07	-	78.0	44s
	446	661	-2.131e	+07	79	505	-	-2.130e+07	-	82.3	51s
	660	929	-2.131e	+07 1	.33	362	-	-2.130e+07	-	84.1	58s
	928	1322	-2.131e	+07 1	.87	333	-	-2.130e+07	-	83.1	66s
	1321	1655	-2.132e	+07 2	68	298	-	-2.130e+07	-	74.3	74s
	1654	2124	-2.132e	+07 3	32	276	-	-2.130e+07	-	72.6	81s
	2123	2661	-2.132e	+07 4	37	208	-	-2.130e+07	-	64.1	89s
	2660	3086	-2.132e	+07 6	10	185	-	-2.130e+07	-	55.0	95s
	3085	3448	-2.132e	+07 7	'00	73	-	-2.130e+07	-	51.1	102s
	3447	3801	-2.133e	+07 8	54	61	-	-2.130e+07	-	50.0	109s
	3800	4097	-2.133e	+07 9	02	22	-	-2.130e+07	-	49.8	116s
;	* 3834	4088		9	30	-2	.13251e+07	-2.130e+07	0.10%	49.5	116s
;	* 4060	3507		8	20	-2	.13205e+07	-2.130e+07	0.08%	49.5	116s
;	* 4061	3506		8	21	-2	.13205e+07	-2.130e+07	0.08%	49.5	116s

 In this exercise we will play with a model from the MIPLIB collection called [gauja](<u>https://miplib.zib.de/instance_details_neos-3530903-gauja.html</u>). Root relaxation: objective 1.634801e+02, 582 iterations, 0.01 seconds (0.00 work units)

	Nod	es	Curren	t Nod	е	Objec	tive Bounds		Wor	۰k
Ε	xpl U	nexpl	Obj Dep	th In	tInf	Incumbent	BestBd	Gap	It/Node	e Time
	0	0	163.48010	0	183	205.00000	163.48010	20.3%	-	0s
Н	0	0			1	79.000000	163.48010	8.67%	-	0s
Н	0	0			1	78.000000	163.48010	8.16%	-	0s
Н	0	0			1	77.0000000	163.48010	7.64%	-	0s
	0	0	163.48010	0	286	177.00000	163.48010	7.64%	-	0s
Н	0	0			1	76.000000	163.48010	7.11%	-	0s
Н	0	0			1	75.0000000	163.48010	6.58%	-	0s
Н	0	0			1	74.0000000	163.48010	6.05%	-	0s
Н	0	0			1	73.0000000	163.48010	5.50%	-	0s
	0	0	163.48010	0	286	173.00000	163.48010	5.50%	-	0s
Н	0	0			1	72.0000000	163.48010	4.95%	-	1s
Н	0	0			1	70.0000000	163.48010	3.84%	-	1s
	0	0	163.48010	0	237	170.00000	163.48010	3.84%	-	1s
	0	0	163.48010	0	218	170.00000	163.48010	3.84%	-	1s
	0	2	163.48010	0	212	170.00000	163.48010	3.84%	-	1s
Н	1556	707			1	69.000000	163.48010	3.27%	31.8	4s
	1562	711	164.00000	166	289	169.00000	163.49255	3.26%	31.7	5s
	1614	748	167.20000	28	229	169.00000	167.20000	1.07%	45.1	10s
	2296	1063	167.20000	79	230	169.00000	167.20000	1.07%	65.9	15s
Н	2891	851			1	68.000000	167.20000	0.48%	79.1	19s

CASE 2:

- Upper bound seems OK
- Internal heuristics + user input do the job early on
- Lower bound is horrible!
 - Cuts
 - More pre-processing
 - Reformulate

Try:

- Cuts
- Presolve

- After using MIPFocus=3
- Solves twice as fast

Root relaxation: objective 1.634801e+02, 2102 iterations, 0.04 seconds (0.00 work units)

	No	des	Curre	ent No	ode	0bjec	tive Bounds		Wor	k
	Expl (Jnexpl	Obj De	epth]	[ntInf	Incumbent	BestBd	Gap	It/Node	Time
	0	0	163.48010) () 175	205.00000	163.48010	20.3%	_	0s
H	0	0				182.0000000	163.48010	10.2%	-	0s
Н	0	0			:	181.0000000	163.48010	9.68%	-	0s
Н	0	0			:	180.0000000	163.48010	9.18%	-	0s
Н	0	0			:	179.0000000	163.48010	8.67%	-	0s
Н	0	0			:	177.0000000	163.48010	7.64%	-	0s
Н	0	0			:	176.0000000	163.48010	7.11%	-	0s
	0	0	163.48010) (223	176.00000	163.48010	7.11%	-	0s
H	0	0				175.0000000	163.48010	6.58%	-	1s
Н	0	0			1	174.0000000	163.48010	6.05%	-	1s
Н	0	0			:	173.0000000	163.48010	5.50%	-	1s
	0	0	163.48010) (210	173.00000	163.48010	5.50%	-	1s
Н	0	0			:	172.0000000	163.48010	4.95%	-	1s
	0	0	163.48010) (259	172.00000	163.48010	4.95%	-	1s
	0	0	163.48010) (250	172.00000	163.48010	4.95%	-	1s
	0	2	163.48010) (211	172.00000	163.48010	4.95%	-	2s
	1108	172	infeasible	e 116	5	172.00000	163.53150	4.92%	63.2	5s
H	2036	398			:	171.0000000	163.53610	4.36%	60.5	6s
Н	2143	484			1	170.0000000	163.53610	3.80%	60.7	6s
Н	2270	470			:	169.0000000	167.20000	1.07%	59.5	10s
Н	2270	446				168.0000000	167.20000	0.48%	59.5	10s

- After trying cuts=1
- Solves three times as fast

Root relaxation: objective 1.634801e+02, 582 iterations, 0.00 seconds (0.00 work units) **Objective Bounds** Nodes Current Node Work Obj Depth IntInf | Incumbent Gap | It/Node Time Expl Unexpl BestBd 0 0 163.48010 0 183 205.00000 163.48010 20.3% 0s -179.0000000 0 0 163.48010 8.67% 0s н -Н 0 0 178.0000000 163.48010 8.16% 0s -Н 0 0 177.0000000 163.48010 7.64% 0s -163.48010 0 0 163.48010 0 286 177.00000 7.64% 0s -0 176.0000000 163.48010 7.11% 0 0s Н -175.0000000 163.48010 6.58% Н 0 0 0s -0 0 174.0000000 163.48010 6.05% н -0s Н 0 173.0000000 163.48010 5.50% 0 0s -163.48010 0 0 0 286 173.00000 163.48010 5.50% -0s 172.0000000 163.48010 0 0 4.95% Н 1s -Н 0 0 170.0000000 163.48010 3.84% 1s -0 163.48010 0 237 170.00000 163.48010 3.84% 1s 0 -0 163.48010 170.00000 163.48010 3.84% 0 0 218 1s -0 2 163.48010 0 212 170.00000 163.48010 3.84% 1s -655 183 169.0000000 163.48010 3.27% 19.4 Н 3s 949 331 infeasible 197 169.00000 163.48010 3.27% 29.9 5s 950 168.000000 163.48010 2.69% 29.9 Н 330 5s

Why tune after when upgrading to a new version?

Gurobi 9.5.2

 MIPFocus=3 outperforms Gurobi default settings and Cuts=1

Root relaxation: objective 1.634801e+02, 2102 iterations, 0.03 seconds (0.00 work units)

	No	des	Cu	Irrent	Vode	9	Objec	tive Bounds		Worl	k
	Expl	Unexpl	Obj	Depth	Int	Inf	Incumbent	BestBd	Gap	It/Node	Time
	0	0	163.48	010	0	175	205.00000	163.48010	20.3%	-	0s
Н	0	0				1	.83.000000	163.48010	10.7%	-	0s
Н	0	0				1	.81.0000000	163.48010	9.68%	-	0s
Н	0	0				1	78.000000	163.48010	8.16%	-	0s
Н	0	0				1	.77.0000000	163.48010	7.64%	-	0s
Н	0	0				1	76.0000000	163.48010	7.11%	-	0s
Н	0	0				1	75.0000000	163.48010	6.58%	-	0s
Н	0	0				1	74.0000000	163.48010	6.05%	-	0s
	0	0	163.48	010	0	238	174.00000	163.48010	6.05%	-	0s
Н	0	0				1	73.0000000	163.48010	5.50%	-	1s
н	0	0				1	72.0000000	163.48010	4.95%	-	1s
	0	0	163.48	010	0	223	172.00000	163.48010	4.95%	-	1s
	0	0	163.48	010	0	258	172.00000	163.48010	4.95%	-	1s
	0	0	163.48	010	0	235	172.00000	163.48010	4.95%	-	1s
	0	2	163.48	010	0	211	172.00000	163.48010	4.95%	-	2s
Н	313	29				1	71.0000000	164.00000	4.09%	135	3s
Н	347	40				1	70.0000000	164.00000	3.53%	163	4s
Н	352	40				1	.69.000000	164.00000	2.96%	165	4s
	615	147	164.00	000 1	74	183	169.00000	164.00000	2.96%	205	5s
	2088	680	167.16	667 1	34	158	169.00000	167.16667	1.08%	160 :	10s
	2118	707	167.20	000	27	115	169.00000	167.20000	1.07%	32.5	15s
Н	2186	717				1	.68.0000000	167.20000	0.48%	51.3	19s

Gurobi 10 & 11

- Gurobi defaults is as good as Gurobi 9.5.2 MIPFocus=3
- Cuts=1 outperforms Gurobi default settings and MIPFocus=3

Root relaxation: objective 1.634801e+02, 582 iterations, 0.00 seconds (0.00 work units)

	No	odes	Curre	nt Nod	е	0bjec	tive Bounds		Wor	k
	Expl	Unexpl	Obj De	pth In	tInf	Incumbent	BestBd	Gap	It/Node	Time
	(e e	163.48010	0	183	205.00000	163.48010	20.3%	-	0s
Ē	+ (a e			1	179.0000000	163.48010	8.67%	-	Øs
ŀ	+ (ə e			1	L78.0000000	163.48010	8.16%	-	0s
H		ə e			1	L77.0000000	163.48010	7.64%	-	0s
	(ə e	163.48010	0	286	177.00000	163.48010	7.64%	-	0s
H		э е			1	L76.0000000	163.48010	7.11%	-	0s
H	H (e e			1	175.0000000	163.48010	6.58%	-	0s
H	+ (9 e			1	L74.0000000	163.48010	6.05%	-	0s
H	H (ə e			1	L73.0000000	163.48010	5.50%	-	0s
	(ə e	163.48010	0	286	173.00000	163.48010	5.50%	-	0s
ŀ	+ (e e			1	L72.0000000	163.48010	4.95%	-	1s
ŀ	+ (e e			1	L70.0000000	163.48010	3.84%	-	1s
	(e e	163.48010	0	237	170.00000	163.48010	3.84%	-	1s
	(ə e	163.48010	0	218	170.00000	163.48010	3.84%	-	1s
	(9 2	163.48010	0	212	170.00000	163.48010	3.84%	-	1s
H	H 655	5 183			1	L69.0000000	163.48010	3.27%	19.4	3s
	949	9 331	infeasible	197		169.00000	163.48010	3.27%	29.9	5s
H	1 956	330			1	L68.0000000	163.48010	2.69%	29.9	5s

Example 1+2: Main takeaways

- First decide which bound needs attention
- With new Gurobi versions, always start tuning using *defaults*

- This exercise is based on the [Hawea model](https://miplib.zib.de/instance_ details_neos-3592146-hawea.html) from miplib.
- Runs with this model take between 1.5 and 2 minutes by default, so you can do these runs yourself.

	Nod	es	Curren	t Noo	le	Obje	ctive Bounds		W	ork
Ex	pl U	nexpl	Obj Dep	th Ir	ntInf	Incumbent	t BestBd	Gap	It/No	de Tir
	0	0	7345804.86	0	208	7.1656e+14	7345804.86	100%	-	Øs D
нΪ	0	0			7.	990584e+07	7345804.86	90.8%	-	0s JN
н	0	0			7.	948122e+07	7345804.86	90.8%	-	Øs
н	0	0			7.	850507e+07	7345804.86	90.6%	-	Øs
н	0	0			7.	179889e+07	7345804.86	89.8%	-	Øs
н	0	0			4.	011613e+07	8596299.40	78.6%	-	Øs
	0	0	1.1582e+07	0	687	3.1712e+07	1.1582e+07	63.5%	-	Øs
	0	0	1.1617e+07	0	690	3.1712e+07	1.1617e+07	63.4%	-	Øs
	0	0	1.1628e+07	0	697	3.1712e+07	1.1628e+07	63.3%	-	Øs
	0	0	1.1636e+07	0	735	3.1712e+07	1.1636e+07	63.3%	-	Øs
	0	0	1.1795e+07	0	929	3.1712e+07	1.1795e+07	62.8%	-	Øs
	0	0	1.1805e+07	0	929	3.1712e+07	1.1805e+07	62.8%	-	Øs
ΗÌ	0	0			3.	125259e+07	1.1805e+07	62.2%	-	Øs
н	0	0			З.	125241e+07	1.1805e+07	62.2%	-	Øs
н	0	2			3.	125233e+07	1.1805e+07	62.2%	-	Øs
	0	2	1.1805e+07	0	926	3.1252e+07	1.1805e+07	62.2%	-	Øs
١.	29	35			2.	917931e+07	1.1805e+07	59.5%	760	2s
H	61	64			2.	657340e+07	1.1805e+07	55.6%	540	2s
 Н	386	217			1.	571950e+07	1.2917e+07	17.8%	232	5s
н	391	221			1.	569036e+07	1.2917e+07	17.7%	233	5s
н	687	355			1.	567685e+07	1.3150e+07	16.1%	202	7s
н	758	414			1.	563173e+07	1.3150e+07	15.9%	205	7s
+ 1	156	534			1.	560619e+07	1.3316e+07	14.7%	176	9s
1	.684	602	cutoff	72		1.5606e+07	1.3316e+07	14.7%	138	10s
н 1	.858	568			1.	554339e+07	1.3316e+07	14.3%	130	10s
+ 1	.975	559			1.	554338e+07	1.3316e+07	14.3%	124	11s
H 2	012	526			1.	554303e+07	1.3316e+07	14.3%	123	12s
7	109	2496	1.5134e+07	35	18	1.5543e+07	1.3586e+07	12.6%	66.6	15s
24	445	8104	1.5322e+07	37	26	1.5543e+07	1.4188e+07	8.72%	39.5	20s
· · · 29	807	8936	1.4774e+07	30	1753	1.5543e+07	1.4320e+07	7.87%	37.3	45s
29	820	8944	1.5422e+07	37	1769	1.5543e+07	1.4320e+07	7.87%	37.3	50s
		8335	1 54070+07	38	173	1 55290+07	1 43200+07	7 78%	58 3	850
H35	557	7852	1.940/210/	50	1	550345e+07	1 43200+07	7 63%	58 5	855
37	064	7631	1.5392e+07	33	129	1.5503e+07	1.4320e+07	7.63%	61.7	985
38	764	7325	1.4611e+07	38	451	1.5503e+07	1.4320e+07	7.63%	65.4	955
41	.085	6537	1.4697e+07	35	151	1.5503e+07	1.4442e+07	6.85%	68.5	101s
42	931	5926	1.5041e+07	37	190	1.5503e+07	1.4613e+07	5.75%	70.7	105s
H45	341	4435		- /	1.	547377e+07	1.4822e+07	4.21%	73.0	109s
*45	342	3999		38	1.	546580e+07	1.4822e+07	4.16%	73.0	109s
46	003	3568	1.5278e+07	41	156	1.5466e+07	1.4868e+07	3.86%	73.4	111s
49	530	1276	1.5419e+07	45	430	1.5466e+07	1.5088e+07	2.44%	72.8	115s

GUROBI OPTIMIZATION

Example 3

What to test

- Presolve (0, 1 or 2)
- MIPFocus (1, 2 or 3)
- Cuts (0, 1, 2 or 3)

Cuts=0 yields more than 5x speedup

Nodes		odes	Current	Nod	e	Objec	tive Bounds		Wor	k
	Expl	Unexpl	Obj Dept	h In	tInf	Incumbent	t BestBd	Gap	It/Node	Time
	e	9 0	7345804.86	0	208	7.1656e+14	7345804.86	100%	-	0s
	H G	9 0			7.	990584e+07	7345804.86	90.8%	-	0s
	H e	9 0			7.	948122e+07	7345804.86	90.8%	-	Øs
	H e	9 0			7.	850507e+07	7345804.86	90.6%	-	Øs
	не	9 0			7.	179889e+07	7345804.86	89.8%	-	Øs
	e	9 0	7525946.79	0	208	7.1799e+07	7525946.79	89.5%	-	Øs
	H e	9 0			7.	179841e+07	7525946.79	89.5%	-	Øs
	H e	9 0			7.	101213e+07	7525946.79	89.4%	-	Øs
	H G	9 2			7.	089075e+07	7525946.79	89.4%	-	Øs
	e	9 2	7525946.79	0	208	7.0891e+07	7525946.79	89.4%	-	Øs
	H 31	L 39			4.	244898e+07	8470498.05	80.0%	158	Øs
	H 78	8 87			4.	217187e+07	8628284.61	79.5%	170	Øs
	H 79	87			4.	031236e+07	8628284.61	78.6%	169	Øs
	•••									
	H 7266	2296			1.	567737e+07	1.3444e+07	14.2%	46.9	5s
	H 7268	3 2098			1.	558982e+07	1.3444e+07	13.8%	46.9	5s
	H10372	2 3427			1.	556375e+07	1.3662e+07	12.2%	42.7	6s
	H15024	4989			1.	554157e+07	1.3839e+07	11.0%	38.3	7s
	27856	8413	1.4715e+07	46	81	1.5542e+07	1.4202e+07	8.62%	32.8	10s
H29250		8198			1.	552163e+07	1.4238e+07	8.27%	32.7	10s
H29252		8063			1.	551125e+07	1.4238e+07	8.21%	32.7	10s
H29270		7947			1.	550345e+07	1.4238e+07	8.16%	32.6	11s
	H29299	7261			1.	546580e+07	1.4238e+07	7.94%	32.7	11s
	52357	7 7991	cutoff	38		1.5466e+07	1.5130e+07	2.17%	30.6	15s

- This exercise is real case model . We were given a model that takes longer using Gurobi than one of our competitors.
- Average runtimes with default settings using are around 186s, mostly spent in the root relaxation.
- Trying Method parameters to explore which method best fit

Root simplex log...

Iteration	Objective	Primal Inf.	Dual Inf.	Time
34697	6.1244562e+04	0.000000e+00	6.704184e+07	5s
48981	3.2502279e+04	0.000000e+00	1.202921e+08	10s
58034	2.6211348e+04	0.000000e+00	8.309235e+07	15s
66138	2.0088283e+04	0.000000e+00	2.454424e+08	20s
72909	1.5873109e+04	0.000000e+00	1.840156e+08	25s
79048	1.3433434e+04	0.000000e+00	1.885575e+08	30s
87913	8.4290853e+03	0.000000e+00	1.985723e+07	35s
92717	6.3783417e+03	0.000000e+00	5.087409e+07	40s
96641	6.1779853e+03	0.000000e+00	1.150974e+08	45s
100722	5.8994659e+03	0.000000e+00	5.005310e+08	50s
105487	5.1598514e+03	0.000000e+00	1.493867e+07	55s
109817	4.7312521e+03	0.000000e+00	1.804181e+07	60s
113762	4.6536219e+03	0.000000e+00	3.288902e+07	65s
117803	4.2505445e+03	0.000000e+00	2.367348e+07	70s
121639	4.1103480e+03	0.000000e+00	5.111156e+07	75s
125379	4.0203901e+03	0.000000e+00	4.242315e+07	80s
129498	3.8670063e+03	0.000000e+00	2.723751e+07	85s
133463	3.7987049e+03	0.000000e+00	4.546264e+07	90s
137700	3.7412582e+03	0.000000e+00	1.860931e+08	95s
141755	3.6749783e+03	0.000000e+00	5.518917e+07	100s
145819	3.6208250e+03	0.000000e+00	9.849596e+07	105s
149825	3.4301639e+03	0.000000e+00	1.265932e+08	110 s
154705	3.3319682e+03	0.000000e+00	2.934038e+08	115s
158952	3.2576891e+03	0.000000e+00	2.541347e+07	120s
163349	3.2154306e+03	0.000000e+00	1.223512e+08	125s
168678	3.1506356e+03	0.000000e+00	2.567265e+07	130s
173172	3.0846458e+03	0.000000e+00	1.859406e+09	135s
Concurrent	spin time: 0.00s	S		

- Using Method=2 (Barrier) for the root relaxation for this model
- LP time reduced
 - 135s -> 10s
- Total solution time reduced
 - 186s -> 30s

	Obje	ective	Resid	dual		
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	-3.26241426e+06	-1.48322406e+08	1.03e+04	1.67e+02	1.13e+04	5s
1	-5.86087009e+05	-1.33377506e+08	2.43e+03	1.08e+02	2.85e+03	5s
2	-1.85498122e+05	-9.20877670e+07	8.09e+02	5.47e+00	9.71e+02	5s
3	-5.37175921e+04	-4.75753312e+07	2.63e+02	8.21e-01	3.41e+02	5s
4	1.07927311e+04	-1.65343656e+07	3.13e+01	7.72e-13	6.77e+01	5s
5	2.40185432e+04	-8.00454047e+06	6.82e+00	7.24e-13	2.89e+01	5s
6	3.48325758e+04	-5.21210857e+06	6.84e-01	8.24e-13	1.56e+01	5s
7	3.82227684e+04	-3.45723745e+06	3.45e-01	8.38e-13	9.67e+00	6s
8	3.94405592e+04	-2.68628221e+06	1.97e-01	1.05e-12	7.13e+00	6s
23	8.78807094e+01	-2.76619959e+03	1.03e-05	8.69e-13	6.41e-03	8s
24	-9.39561391e+01	-1.59911655e+03	4.76e-06	8.70e-13	3.38e-03	<mark>8</mark> s
25	-1.46363338e+02	-1.42103995e+03	3.70e-06	8.61e-13	2.86e-03	8s
26	-2.25188637e+02	-9.57030939e+02	2.19e-06	6.68e-13	1.64e-03	<mark>8</mark> s
27	-2.29121350e+02	-9.20556013e+02	2.12e-06	7.74e-13	1.55e-03	<mark>8</mark> s
28	-3.10484728e+02	-7.59502256e+02	7.07e-07	7.69e-13	1.01e-03	<mark>8</mark> s
29	-3.15260063e+02	-5.72249339e+02	6.40e-07	9.60e-13	5.77e-04	8s
30	-3.50528259e+02	-4.79759660e+02	2.19e-07	7.92e-13	2.90e-04	<mark>8</mark> s
31	-3.63815873e+02	-4.19731247e+02	5.98e-08	7.19e-13	1.25e-04	9s
32	-3.68082088e+02	-3.81969185e+02	1.49e-08	8.75e-13	3.11e-05	9s
33	-3.70317729e+02	-3.72174258e+02	1.34e-09	8.25e-13	4.16e-06	9s
34	-3.70634151e+02	-3.70982614e+02	1.02e-10	9.65e-13	7.80e-07	9s
35	-3.70636385e+02	-3.70861113e+02	2.80e-09	7.60e-13	5.03e-07	9s
36	-3.70639205e+02	-3.70684903e+02	3.06e-09	8.43e-13	1.02e-07	9s
37	-3.70644027e+02	-3.70645769e+02	7.63e-09	8.73e-13	3.90e-09	9s
38	-3.70645291e+02	-3.70645293e+02	5.72e-12	8.18e-13	3.91e-12	10s

Barrier solved model in 38 iterations and 9.56 seconds (7.31 work units) Optimal objective -3.70645291e+02

Exercises 3+4: Main takeaways

- It's not always clear which bound needs attention. Try both using MIPFocus!
- Pay attention to where the time is spent
- Carefully check the LP method used; depends on #threads and model!

Some takeaways

Situation	First step	Additional steps
Presolve takes a lot of time, without making progress	 Presolve=0 1 Limit PrePasses* 	 If a QP, try PreMIQCPForm and PreQLinearize PreDual and Aggregate sometimes also make a big difference
LP relaxation accounts for a lot of time	 Explicitly set Method Try No Relaxation Heuristic (NoRelHeurTime) 	 Try different Presolve parameter values Examine additional simplex/barrier parameters
Root node takes a lot of time	Cuts=0	Limit CutPasses*
Difficult node LPs (low node throughput)	Try all LP methods (NodeMethod)	Different pricing schemes for simplex (e.g. SimplexPricing=2 (devex))
Primal bound does not move after many nodes	 Heuristics=0.25 0.5 MIPFocus=1 	 Check which heuristics help (e.g. RINS) and increase selectively No Relaxation Heuristic Provide initial solution, even if bad BranchDir
No solution is found	No Relaxation Heuristic (NoRelHeurTime)Zero out objective	Use feasRelax() to create a feasible relaxation of the model
Dual bound does not move	 MIPFocus=2 3 Cuts=2 3 Presolve=2 	Different pricing schemes for simplex (e.g. SimplexPricing=2 (devex))

Automated tuning

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 77

Automated tools to help with tuning

Parameter Tuning Tool

Performs multiple solves on your model with different parameter settings to search for settings that improve performance

aseline param			Tested 142 parameter sets in 198.66s									
Baseline parameter set: mean runtime 2.18s												
Default parameters												
# Name 0 1 2 Avg Max Std Dev												
0 MISC07	1.76s	2.56s	2.21s	2.18s	2.56s	0.33						
Improved parameter set 1 (mean runtime 0.46s):												
Heuris	tics 0											
MIPFoc	us 2											
Cuts 0												
PrePasses 5												
4 N	0		0	A		Ot d. Davi						
# Name	0	1	2	Avg	Мах	Std Dev						
0 MISC07	0.46s	0.45s	0.47s	0.46s	0.47s	0.01						
	Defaul # Name 0 MISC07 mproved param Heuris MIPFoc Cuts 0 PrePas # Name 0 MISC07	Default parameter # Name 0 0 MISC07 1.76s mproved parameter set 1 Heuristics 0 MIPFocus 2 Cuts 0 PrePasses 5 # Name 0 0 MISC07 0.46s	Default parameters # Name 0 1 0 MISC07 1.76s 2.56s mproved parameter set 1 (mean run Heuristics 0 MIPFocus 2 Cuts 0 PrePasses 5 # Name 0 1 0 MISC07 0.46s 0.45s	Default parameters # Name 0 1 2 0 MISC07 1.76s 2.56s 2.21s mproved parameter set 1 (mean runtime 0.4 Heuristics 0 MIPFocus 2 Cuts 0 PrePasses 5 # Name 0 1 2 0 MISC07 0.46s 0.45s 0.47s	Default parameters # Name 0 1 2 Avg 0 MISC07 1.76s 2.56s 2.21s 2.18s mproved parameter set 1 (mean runtime 0.46s): Heuristics 0 MIPFocus 2 Cuts 0 PrePasses 5 # Name 0 1 2 Avg 0 MISC07 0.46s 0.45s 0.47s 0.46s	Default parameters # Name 0 1 2 Avg Max 0 MISC07 1.76s 2.56s 2.21s 2.18s 2.56s mproved parameter set 1 (mean runtime 0.46s): Heuristics 0 MIPFocus 2 Cuts 0 PrePasses 5 # Name 0 1 2 Avg Max 0 MISC07 0.46s 0.45s 0.47s 0.46s 0.47s						

For more information, please see the <u>Parameter Tuning Tool</u> documentation

Extract and Visualize log information

Use Gurobi's open source tool: grblogtools

For more information, see this <u>video webinar</u> and the <u>grblogtools</u> <u>github</u>.

How to use the Parameter tuning tool

Use the command line client (grbtune) Example:

- grbtune Logfile=tune.log TuneOutput=3
 TuneTrials=5 TuneTimeLimit=432000
 TimeLimit=600 TuneCriterion=2
 Method=1 model1.mps model2.mps
- Tune two models for 5 days
- Show full logfile output of each run,
- Test each model with 5 different random seeds
- Write output to tune.log
- Run each model for up to 10 minutes
- Always use dual simplex
- Tune for best feasible solution within the time limit

Use the API to tune a model Example

m=read('model.mps')
m.params.Method=1
m.params.TuneTimeLimit=86400
m.tune()

- Tune for one day
- Use the dual simplex method

Tuning tool output

Tries multiple parameter combinations, looks for improving set

Testing candidate parameter set 16...

MIPFocus 2 VarBranch 1

Solving with random seed #1 ... runtime 3.01s+

Progress so far: baseline runtime 3.91s, best runtime 1.83s Total elapsed tuning time 99s (18s remaining)

Reports best results found when completes

Tuning metrics

- Primary tuning criterion minimizes the runtime (wall-clock time)
- When MIP models that don't solve to optimality within the specified time limit, we need a secondary criterion
- Use **TuneCriterion** parameter:
 - > TuneCriterion=0 Ignores secondary criterion
 - > TuneCriterion=1 Use optimality gap as secondary criterion (current default)
 - > TuneCriterion=2 Use objective of the best feasible solution found
 - > TuneCriterion=3 Use best objective bound

Don't overtune...

Example output:

Improved parameter set 1 (MIP gap 2.33%): Improved parameter set 4 (MIP gap 3.94%):

SimplexPricing 3 Heuristics 0.001 MIPFocus 2 **RINS 2500** VarBranch 0 CutPasses 5 PrePasses 1

Improved parameter set 2 (MIP gap 2.54%):

SimplexPricing 3 Heuristics 0.001 MIPFocus 2 **RINS 500** VarBranch 0 PrePasses 1

Improved parameter set 3 (MIP gap 2.70%):

SimplexPricing 3 Heuristics 0.001 MIPFocus 2 VarBranch 0 PrePasses 1

Heuristics 0.001 MIPFocus 2 VarBranch 0 PrePasses 1 Improved parameter set 5 (MIP gap 4.56%): MIPFocus 2 VarBranch 0 PrePasses 1

Improved parameter set 6 (MIP gap 7.33%):

PumpPasses 10 VarBranch 0

Improved parameter set 7 (MIP gap 12.4%):

Method 0

Best practices

TuneTrials parameter

Never do a single trial

Three trials may not be large enough

More trials may be needed for

- Models with high performance variability
- Models solve within seconds

Understand parameters

Understand why certain parameters are helpful

Remember, Gurobi Experts can help

Only set parameters that really help performance Look for 10-20% performance gain Avoid random results

TuneTimeLimit parameter

Use enough time to explore the parameter space

Examine at least a few hundred parameter combinations

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 85

Selecting and sending models to tune

Consider

- Which models to send?
- How many instances to send? We recommend 2-3.

How to send models to Gurobi for Tuning

- Export your models as an MPS or LP file
- Send compressed files through our upload page
- Add details to help us understand your case:
 - Model application
 - Termination criteria (MIPGap, TimeLimit, etc.)
 - Current parameters used
 - What you are hoping to achieve
- For more details see the instructions in <u>How do I upload or send files to Gurobi?</u>

	Products Customers	Resources	Decumernation Academia	Downloads & Licens	ea Support . Partners	S. My Account	a
chrs + Susport + Uslaad	-						
File Uploa	ad Via Web				6		
To send models and other files	for review, please use the form below	v:					. I
	Email eozad@gurobi.com			12			
	123 Ticket number if known	Č.		<u></u>			
	${\bf A}$ Model application (e.g.	, vehicle routing)					
	Comment (max 1050 cl	haracters)					
	<u>.</u>	_	_	2 0			J

Thank you Questions?

Jennifer Locke Manager, Technical Account Management, Americas locke@gurobi.com www.gurobi.com

1:30 - 1:40 Welcome Remarks
1:40 - 2:25 What's new in Gurobi 11
2:25 - 3:10 Hidden Gems
3:10 - 3:30 Break
3:30 - 4:15 Performance Tuning
4:15 - 5:00 Lessons in Successful Delivery from a Large-scale Workforce Scheduling Project

5:00 - 5:30 Q&A

Please join us for Happy Hour following the event