
Gurobi Optimization LLC

Customer Applications

Accounting Advertising Agriculture

Airlines ATM provisioning Compilers

Defense Electrical power Energy

Finance Food service Forestry

Gas distribution Government Internet applications

Logistics/supply chain Medical Mining

National research labs Online dating Portfolio management

Railways Recycling Revenue management

Semiconductor Shipping Social networking

Sourcing Sports betting Sports scheduling

Statistics Steel Manufacturing Telecommunications

Transportation Utilities Workforce Management

Gurobi Guidelines for Numerical Issues

...or why things go wrong

... and how to avoid it

... and how to avoid it

What are numerical issues?
Numerical issues is a generic name given to cases where the results of an optimization problem are either erratic, inconsistent,
unexpected, or plain poor performance of the underlying algorithms.

Rounding
Real numbers aren't real
Unrealistic expectations on precision
Ill conditioning

Avoid Rounding Coefficients

And why it can be extremely dangerous

Consider the following input:
$$\begin{eqnarray*} x - 6y &=&1\\ 0.333x - 2y &= & .333 \end{eqnarray*}$$

$$\begin{eqnarray*} x - 6*(0.1665x - 0.1665) &=& 1\\ \Leftrightarrow 0.001x &=& 0.001 \end{eqnarray*} $$

And then, $x=1$ and $y=0$ is the only solution

Avoid Rounding Coefficients
If instead, we input:
$$ \begin{eqnarray*} x - 6y&=&1\\ 0.3333333333333333x - 2y&=&0.3333333333333333 \end{eqnarray*} $$

$$ \begin{eqnarray*} x - 6*(0.1666666666666667x - 0.1666666666666667) &=& 1\\ \Leftrightarrow 2\cdot10^{-16} x + 1 + 2\cdot10^{-
16} &\approx& 1 \end{eqnarray*} $$

i.e. all solutions satisfying $x = 6y +1$ are accepted as feasible.

.... what about $2\cdot10^{-16}$?

Real numbers are not Real

Really really...
In [10]:

1 + 1e-16 == 1

In [11]:

1e16 + 1 == 1e16

The same is true for Excel, R, C, Java....

Out[10]:

True

Out[11]:

True

The same is true for Excel, R, C, Java....

In [18]:

(1 + 1e-16) + 1e-16 == 1 + (1e-16 + 1e-16)

... of course there are some exceptions... most notably GNU-MP and GNU-bc, but....

In [19]:

import sys
print(sys.float_info)

What does this means?
Most platforms provide dedicated hardware to handle IEEE 754 64 bit floating point numbers.
Alternative software representations can be much slower than standard double precision numbers. (10x and 100x are not
unusual)
Gurobi (as most scientific computing software) uses double precision numbers.
Testing for equality or exact computations simply won't do.

Tolerances and User-Scaling
Will always solve given model....

Presolve, or cutting planes, may convert

$(1+10^{-7})x\leq 1,\,x\in\{0,1\}$

into

$x=0$

Tolerances and User-Scaling
Will always solve given model.... but when a feasible solution is found

Checking for optimality always requires to check for:
Integrality:
We have to decide when a number x is an integer or not. Gurobi defines IntInfTol as the integrality tolerance, and accept x as
integer if $\mathrm{abs}(x - \mathrm{floor}(x + 0.5))\leq\mathtt{IntInfTol}$

Primal Feasibility:
Given a linear constraint $a^t\cdot x\leq b$, we have to decide when that is satisfied or not. Gurobi defines FeasibilityTol as the
primal feasibility tolerance, and accept x as primal feasible for a constraint if $a^t\cdot x -b \leq\mathtt{FeasibilityTol}$

Dual Feasibility:
Given a dual constraint $a^t \cdot y \leq c$, we have to decide when that is satisfied or not. Gurobi defines OptimalityTol as the dual
feasibility tolerance, and accept y as a feasible dual solutions if $a^t\cdot y - c \leq\mathtt{OptimalityTol}$.

Out[18]:

False

sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_
exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1)

Tolerances and User-Scaling
What does this imply?

Tolerances are absolute values.
Scaling affect the meaning of these.

Given a point x^* feasible to the original model within tolerances
Presolve, cutting planes, may eliminate it from the feasible region

i.e. declare this particular solution infeasible
It may be found and by accepted during the solve process

Thus ... for numerically unstable models
Even the optimal value may not be unique!

How bad are these limits?
Default tolerances are 10^{-6} for primal/dual and 10^{-5} for integrality.
If constraints range in 10^3 or 10^4, then primal feasible solutions will have a relative error of less than 10^{-9}, or one
in a billion!

This is usually more than what is measurable in physical quantities
In engineering problems, just measurement/approximation error is way more than this.
Be aware of very small active ranges for constraints

Same applies to range of variables.
Specially for integer variables... if range is around 10^6... do you really care if they are integer?

For objective functions, good solutions should have objective values in the range $[-10^4:10^4]$.
Otherwise dual feasibility can become an issue

Should also avoid optimal objective values too close to zero...
... Unless objective is truly zero.

All this can easily be achieved by simply scaling rows, columns, and the objective function.

Getting to tight ranges for variables and constraints
There are three simple steps that help to get to good ranges:

Use information not available to the solver to derive tight bounds
Change units (eg. from tons to thousand tons) to get to good ranges
Dissaggregate hierarchical objectives by using multi-objective optimization

Why Scaling is Relevant
Suppose we randomly scale columns in a given problem (within a range):

In []:

%load -r 31-40 rescale.py
col = m.getCol(var)
for i in range(col.size()):
 coeff = col.getCoeff(i)
 row = col.getConstr(i)
 m.chgCoeff(row, var, coeff*scale)
var.obj = var.obj*scale
if var.lb > -GRB.INFINITY:
 var.lb = var.lb/scale

 var.lb = var.lb/scale
if var.ub < GRB.INFINITY:
 var.ub = var.ub/scale

Why Scaling is Relevant
In [6]:

%run rescale.py -f pilotnov.mps.bz2 -s 1

Why Scaling is Relevant
In [7]:

%run rescale.py -f pilotnov.mps.bz2 -s 1000

Why Scaling is Relevant
In [8]:

%run rescale.py -f pilotnov.mps.bz2 -s 1e6

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:
 Matrix range [2e-06, 1e+07]
 Objective range [2e-03, 1e+00]
 Bounds range [5e-06, 6e+04]
 RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
 Consider reformulating model or setting NumericFocus parameter
 to avoid numerical issues.
Presolve removed 254 rows and 513 columns
Presolve time: 0.03s
Presolved: 721 rows, 1659 columns, 11454 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 -3.2008682e+05 1.451454e+05 0.000000e+00 0s
 991 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 991 iterations and 0.14 seconds
Optimal objective -4.497276188e+03
Kappa: 2.681961e+06

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:
 Matrix range [5e-09, 9e+09]
 Objective range [2e-06, 2e+03]
 Bounds range [5e-09, 8e+07]
 RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
 Consider reformulating model or setting NumericFocus parameter
 to avoid numerical issues.
Presolve removed 100 rows and 255 columns
Presolve time: 0.02s
Presolved: 875 rows, 1917 columns, 11899 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 -6.1727412e+32 7.113559e+31 6.172741e+02 0s
 1395 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1395 iterations and 0.21 seconds
Optimal objective -4.497276188e+03
Kappa: 2.740228e+07

Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Coefficient statistics:
 Matrix range [6e-12, 9e+12]

Why Scaling is Relevant
In [2]:

%run rescale.py -f pilotnov.mps.bz2 -s 1e8

Advanced User-Scaling
Row or objective scaling can be considered simultaneously with column scaling:

Consider
$$ \begin{eqnarray*} 10^{-7}x + y &\leq& 0\\ x - 10^{3} z & \leq & 10^4\\ x&\in&[0,10^5] \end{eqnarray*} $$

This can be replaced with $$\begin{eqnarray*} 10^{-3}x' + y &\leq& 0\\ 10x' + z &\leq&10\\ x'&\in&[0,10], \end{eqnarray*}$$ where
$x=10^4x'$.

Note that solving $10x'+z\leq10$ is easier than $10^4x'+10^3z\leq10^4$!

Don't lie to yourself
Usual guideline: Keep range of coefficients of rows/columns small:

$$\begin{eqnarray*} x - 10^{6} y &\geq& 0 \\ y&\geq&0 \end{eqnarray*} $$

 Matrix range [6e-12, 9e+12]
 Objective range [2e-08, 1e+06]
 Bounds range [5e-12, 3e+10]
 RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds
 Consider reformulating model or setting NumericFocus parameter
 to avoid numerical issues.
Presolve removed 99 rows and 250 columns
Presolve time: 0.02s
Presolved: 876 rows, 1922 columns, 11920 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 -7.9535394e+34 7.293786e+31 7.953539e+04 0s
 1555 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1555 iterations and 0.22 seconds
Optimal objective -4.497276188e+03
Warning: unscaled primal violation = 2320.84 and residual = 0.119918
Kappa: 3.230371e+11

Optimize a model with 975 rows, 2172 columns and 13056 nonzeros
Coefficient statistics:
 Matrix range [1e-13, 8e+14]
 Objective range [3e-10, 1e+08]
 Bounds range [5e-14, 5e+12]
 RHS range [1e-05, 4e+04]
Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds
 Consider reformulating model or setting NumericFocus parameter
 to avoid numerical issues.
Presolve removed 86 rows and 249 columns
Presolve time: 0.02s

Solved in 0 iterations and 0.02 seconds
Infeasible model

\begin{eqnarray*} x - 10 y_1 &\geq& 0\\ y_1 - 10 y_2 &=& 0\\ y_2 - 10 y_3 &=& 0\\ y_3 - 10 y_4 &=& 0\\ y_4 - 10 y_5 &=& 0\\ y_5 - 10 y
&=& 0\\ y&\geq&0 \end{eqnarray*}

Still has $y=-10^{-6}$ and $x=-1$ as feasible!

Don't lie to yourself
Usual guideline: Keep range of coefficients of rows/columns small:

$$\begin{eqnarray*} x - 10^{6} y &\geq& 0 \\ y&\geq&0 \end{eqnarray*} $$

If $y\in[0,10]$ we can use: $$ \begin{eqnarray*} x - 10^{3} y' &\geq& 0 \\ y'&\in&[0,1e^4]\\ \end{eqnarray*} $$ where $10^{-3} y' = y$.

In this setting the most negative values for x would be -10^{-3}, and for y it would be -10^{-9}.

Big-M constraints
Constructs such as: $$ \begin{eqnarray*} x&\leq&10^6y\\ x&\geq&0\\ y&\in& \{0,1\} \end{eqnarray*} $$

Widely used... BUT... $x = 9.9999, y = 0.0000099999$ is feasible

$$ \begin{eqnarray*} x&\leq&10^3y\\ x &\geq& 0\\ y &\in & \{0,1\} \end{eqnarray*} $$
And now, $y = 0.0000099999$ would only allow for $x \leq 0.01$.

Otherwise... try SOS or General Implication constraints.

In Summary
Try to get range of variables within reason ($[-10^4:10^4]$)
Try to select scaling of rows so active range is within reason ($[-10^4:10^4]$)
Try to scale objective so that good solutions are in the range ($[-10^4:10^4]$)
Don't expect to compare quantities with very different absolute values (above 10 orders of magnitude...)

This may improve performance of your current model!
Gurobi does try to clean up numerical issues
The cost... running time
Extra steps
Disable some routines

Does my model have numerical issues?
Isolate the issue:

Use GURO_PAR_DUMP 1
Will generate gurobi.rew and gurobi.prm

Inspect the model:

m = read('gurobi.rew')

 m.printStats()

 Statistics for model (null) :

 Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs

 Variable types : 14836 Continuous, 984 Integer

 Matrix coefficient range : [0.00099, 6e+06]

 Matrix coefficient range : [0.00099, 6e+06]

 Objective coefficient range : [0.2, 65]

 Variable bound range : [1, 5e+07]

 RHS coefficient range : [1, 5e+07]

What is a reasonable range?

Does my model have numerical issues?
Review the logs:

m.read('gurobi.prm')

 m.optimize()

Usual warning outputs:

 Warning: Model contains large matrix coefficient range

 Consider reformulating model or setting NumericFocus parameter

 to avoid numerical issues.

 Warning: Markowitz tolerance tightened to 0.5

 Warning: switch to quad precision

 Numeric error

 Numerical trouble encountered

 Restart crossover...

 Sub-optimal termination

 Warning: ... variables dropped from basis

 Warning: unscaled primal violation = ... and residual = ...

 Warning: unscaled dual violation = ... and residual = ...

Does my model have numerical issues?
Inspect solution quality:

m.printquality()

Summary of violations:

 Solution quality statistics for model Unnamed :

 Maximum violation:

 Bound : 2.98023224e-08 (X234)

 Constraint : 9.30786133e-04 (C5)

 Integrality : 0.00000000e+00

Inspect the Condition Number:

 m.KappaExact

Does my model have numerical issues?
Other symptoms:

If I change some parameter the solution changes!

If I change the seed the solution changes!

If I change algorithm the model becomes infeasible!

If I change tolerances...

If I change tolerances...

99.9% is a sign of numerical problems:
If by tightening tolerances, things become stable...
If you already scaled the ranges for primal and dual values...

Give us call!

Solver parameters to manage numerical issues

Presolve
Sometimes presolve may deteriorate numerics

Try:

m = read('gurobi.rew')

 p = m.presolve()

 p.printStats()

If increase range:
Use Presolve=0
Use Aggregate=0
Use AggFill=0

Use the right algorithm:
Usually Barrier is fastest, but more sensitive to numerics

Try different root methods:
Simplex based: Method=0 Method=1
Barrier: Method=2
Concurrent: Method=3 Method=4 Method=5

Make the algorithm less sensitive:
NumericFocus: Modifies a series of parameters that improve numeric behavior, this includes:

MarkowitzTol for simplex
Quad for extended precision simplex
GomoryPasses

CutPasses

CutAggPasses

NormAdjust: Manages pricing in Simplex.
BarHomogeneous: For infeasible/unbounded models, this may help Barrier.
CrossoverBasis: Usually slower, but more robust crossover for Barrier.
Cuts: Disable cuts may help numerical stability.

Advanced Material

What is the Condition Number?

Not all issues with instability of results have to do with numeric errors. One broad concept is the sensibility of a given problem to
perturbations in the input data. This concept, usually known as Condition Number, is relevant because in the presence of numeric

perturbations in the input data. This concept, usually known as Condition Number, is relevant because in the presence of numeric
errors, this indicates how likely it is to get unstable answers.

For Linear systems $Ax=b$, The condition number is denoted and defined as $$\kappa(A):=\|A\|\cdot\|A^{-1}\|$$

A common geometric interpretation of this concept has to do with how rounded the feasible region is. For bounded sets, you can think
of it as the ratio between the smallest circle containing the feasible region and the largest circle contained in the feasible region.

Optimizing over a circle

Optimizing over a circle
In [2]:

from gurobipy import *
from math import *
n = 1024
m = Model('Circle Optimization')
X = m.addVars(2,lb=-2,ub=2)
m.addConstrs(X[0]*cos((2*pi*i)/n) + X[1]*sin((2*pi*i)/n) <= 1 for i in range(n))
m.update()

Optimizing over a circle
In [3]:

%run circleOpt.py

Warning for adding constraints: zero or small (< 1e-13) coefficients, ignored

Warning for adding constraints: zero or small (< 1e-13) coefficients, ignored
Added 2 Vars and 1048576 constraints in 20.62 seconds
Errors: 2.99567e-09 0 4.74059e-07 1.38778e-17 Iter 0 10 Kappa 2481.79
Errors: 1.30387e-07 0 9.66287e-07 5.55112e-17 Iter 1 21 Kappa 1739.05
Errors: 5.82762e-07 0 3.12808e-07 6.93889e-17 Iter 2 33 Kappa 3054.68
Errors: 5.82762e-07 0 2.94137e-07 1.11022e-16 Iter 3 44 Kappa 3150.06
Errors: 5.82762e-07 0 9.78818e-07 1.66533e-16 Iter 5 67 Kappa 1727.89
Errors: 6.92325e-07 0 3.4936e-07 1.66533e-16 Iter 11 133 Kappa 2890.58
Errors: 6.92325e-07 0 3.8268e-07 1.66533e-16 Iter 15 179 Kappa 2761.99
Errors: 1.08973e-06 0 9.99895e-07 1.66533e-16 Iter 16 190 Kappa 1709.61
Errors: 1.11311e-06 0 9.4557e-07 1.66533e-16 Iter 225 2562 Kappa 1757.96
Errors: 1.11311e-06 0 9.99895e-07 1.66533e-16 Iter 286 3257 Kappa 1709.61
Errors: 1.31624e-06 0 9.29161e-07 1.66533e-16 Iter 291 3313 Kappa 1773.4
Errors: 1.31624e-06 0 9.99895e-07 1.66533e-16 Iter 304 3464 Kappa 1709.61

Optimizing over a thin line

Optimizing over a thin line
In [6]:

from gurobipy import *
Test the effect of small perturbations on the optimal solutions
for a problem with a thin feasible region
rhs = 1e3
m = Model('Thin line Optimization')
x = m.addVar(obj=1)
y = m.addVar(obj=0, lb=-GRB.INFINITY, ub=GRB.INFINITY)
c1 = m.addConstr(1e-5 * y + 1e-0 * x <= rhs)
c2 = m.addConstr(- 1e-5 * y + 1e-0 * x <= rhs)
m.update()

Optimizing over a thin line
In [7]:

%run thinOpt.py

Condition Number

Recap
Some instability is induced by the geometry of the problem defined by the user.

This instability may be exacerbated by limited precision.
Since Gurobi does not second guess user input, these issues can become critical.

Errors: 1.31624e-06 0 9.99895e-07 1.66533e-16 Iter 304 3464 Kappa 1709.61
Errors: 1.43708e-06 0 8.84782e-07 1.66533e-16 Iter 320 3648 Kappa 1817.27
Errors: 1.43708e-06 0 9.00796e-07 1.66533e-16 Iter 330 3764 Kappa 1801.07
Errors: 1.62804e-06 0 9.66287e-07 1.66533e-16 Iter 333 3796 Kappa 1739.05
Errors: 1.62804e-06 0 9.99895e-07 1.66533e-16 Iter 335 3817 Kappa 1709.61
Errors: 1.62804e-06 0 2.94137e-07 2.22045e-16 Iter 359 4079 Kappa 3150.06
Errors: 1.62804e-06 0 3.27188e-07 2.22045e-16 Iter 361 4102 Kappa 2986.85
Errors: 1.62804e-06 0 3.34495e-07 2.22045e-16 Iter 362 4113 Kappa 2954.05
Errors: 1.62804e-06 0 8.84782e-07 2.22045e-16 Iter 368 4181 Kappa 1817.27
Errors: 1.62804e-06 0 9.99895e-07 2.22045e-16 Iter 369 4192 Kappa 1709.61
Errors: 1.70968e-06 0 9.66287e-07 2.22045e-16 Iter 474 5387 Kappa 1739.05
Errors: 1.70968e-06 0 9.99895e-07 2.22045e-16 Iter 478 5431 Kappa 1709.61

New maxdiff 4e+16 Iter 0 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 2 Kappa 3.31072 Violations: 0 0 6.61744e-24
New maxdiff 4e+16 Iter 50 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 91 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 695 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1692 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1876 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 4462 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 4522 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 51461 Kappa 3.31072 Violations: 0 0 2.11758e-22
New maxdiff 4e+16 Iter 189604 Kappa 3.31072 Violations: 0 0 1.05879e-22
New maxdiff 4e+16 Iter 428283 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 899680 Kappa 3.31072 Violations: 0 0 0

Since Gurobi does not second guess user input, these issues can become critical.
Most of these geometric issues can (and should) be avoided via reformulation.

This reformulation must be done at the user-level

Thanks for your attention!

... Questions?

Further reading:
IEEE Standard for Binary Floating-Point Arithmetic, also known as IEE 754
What every computer scientist should know about floating-point arithmetic, David Golberg, 1991, ACM Computing Surveys
(CSUR), 23:5--48.
Numerical Computing with IEEE Floating Point Arithmetic, Michael L. Overton, SIAM, 2001.

https://en.wikipedia.org/wiki/IEEE_754
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://epubs.siam.org/doi/abs/10.1137/1.9780898718072.bm

	Gurobi Optimization LLC
	Customer Applications
	Gurobi Guidelines for Numerical Issues
	...or why things go wrong
	... and how to avoid it

	What are numerical issues?
	Avoid Rounding Coefficients
	And why it can be extremely dangerous

	Avoid Rounding Coefficients
 what about $2\cdot10^{-16}$?

	Real numbers are not Real
	Really really...

	What does this means?
	Tolerances and User-Scaling
	Tolerances and User-Scaling
	Tolerances and User-Scaling
	How bad are these limits?
	Getting to tight ranges for variables and constraints
	Why Scaling is Relevant
	Why Scaling is Relevant
	Why Scaling is Relevant
	Why Scaling is Relevant
	Why Scaling is Relevant
	Advanced User-Scaling
	Don't lie to yourself
	Don't lie to yourself
	Big-M constraints
	In Summary
	Does my model have numerical issues?
	Does my model have numerical issues?
	Does my model have numerical issues?
	Does my model have numerical issues?
	Solver parameters to manage numerical issues
	Presolve
	Use the right algorithm:
	Make the algorithm less sensitive:
	Advanced Material
	What is the Condition Number?

	Optimizing over a circle
	Optimizing over a circle
	Optimizing over a circle
	Optimizing over a thin line
	Optimizing over a thin line
	Optimizing over a thin line
	Condition Number
	Recap

	Thanks for your attention!
	... Questions?

	Further reading:

