
Specialized Strategies for
Products of Binary Variables

Ed Klotz, Ph.D. (klotz@gurobi.com)
February 2021

Products of binaries

Copyright © 2021, Gurobi Optimization, LLC 2

• Problem formulation:

min[𝑐!𝑥] + 𝑥!𝑄𝑥 // 𝑛𝑜 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑥!𝑄𝑥
[𝑠. 𝑡. 𝐴𝑥 ~ 𝑏]

𝑥 ∈ {0,1}

• Possibly	nonconvex	MIQP
• Can	reformulate	constraints	into	objective	using	penalties	(QUBO)
• Good	formulation	for	Quantum	Annealers,	not	so	good	for	solvers	like	Gurobi
• https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-

on-formulating-and-using-q/17436666

https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666

Copyright © 2021, Gurobi Optimization, LLC 3

Outline

• Products of binaries fundamentals

• Solver options and parameters

• Working with the existing formulation

• Reformulations

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 4

• Solution strategies

• Solve as convex or nonconvex MIQP
• Still must deal with the quadratic objective
• Starting with version 9.0, Gurobi can solve nonconvex MIQPs (and

MIQCPs)

• Transform into a convex MIQP or a MILP
• Convexification of objective (𝑥!" = 𝑥! for binary variables)
• 𝑥"𝑥# = 𝑥"𝑥# + (𝑥"$- 𝑥") + (𝑥#$−𝑥#)= (𝑥!"+𝑥!𝑥# + 𝑥#") − 𝑥! − 𝑥#

• 𝑥#𝑄𝑥 = 𝑥#𝑄𝑥 + 𝑥#𝐷𝑥 − 𝑑#𝑥 = 𝑥# 𝑄 + 𝐷 𝑥 − 𝑑!𝑥
0

00 convex

PSD

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 5

• PreQLinearize = 0: Convexification of objective (𝑥!" = 𝑥! for binary variables)
• A nonconvex MIQP becomes a convex one without adding constraints

• But there is no free lunch
• 𝑥!𝑥$ = 𝑥!𝑥$ + (𝑥!"- 𝑥!) + (𝑥$"−𝑥$)= (𝑥!"+𝑥!𝑥# + 𝑥#") − 𝑥! − 𝑥#

• Consider 𝑥! = 𝑥$= .5 in
min 𝑥!𝑥$ 𝑠. 𝑡
𝑥!+ 𝑥$= 1
𝑥!, 𝑥$ ≥ 0

• Objective value in relaxation is -.25
• Potential for negative dual bound values for convexified model that has an

obvious lower bound of 0 in the original model
• As magnitude of D increases, so does the weakness in the dual bound of the

convexified problem

00 relaxation convex

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 6

• Solution strategies
• Linearize a convex or nonconvex MIQP into a MILP
• Simplest linearization technique: do the following for each product of

binaries in the model (PreQLinearize=1)
• 𝑧"# = 𝑥"𝑥#
𝑧"# ≤ 𝑥"
𝑧"# ≤ 𝑥#
𝑧"# ≥ 𝑥" + 𝑥# − 1

• Add	the	3	linear	constraints	to	the	model
• Replace	each	occurrence	of	 𝑥!𝑥$ in	the	model	with	𝑧!$

• We’ve	transformed	a	(possibly	nonconvex	MIQP)	into	a	MILP
• Benefit	from	various	Gurobi features	available	for	MILP	but	not	MIQP
• Still	no	free	lunch

• We	added	1-3	constraints	for	each	product	of	binaries.

(only need this one if objective pushes 𝑧!" down)

(only need these two if objective pushes 𝑧!" up)

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 7

• Solution strategies
• Linearize a convex or nonconvex MIQP into a MILP
• A less straightforward but more compact linearization technique
• Consider the MIPLIB 2010 model neos-911970

Minimize
C0001 + C0002 + C0003 + C0004 + C0005 + C0006 + C0007 + C0008 + C0009
+ C0010 + C0011 + C0012 + C0013 + C0014 + C0015 + C0016 + C0017 + C0018
+ C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027
+ C0028 + C0029 + C0030 + C0031 + C0032 + C0033 + C0034 + C0035 + C0036
+ C0037 + C0038 + C0039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045
+ C0046 + C0047 + C0048

Subject To
R0001: - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145

+ 4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+ 4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385
+ 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
+ 4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
+ 5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745
+ 5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 6.5

…

Penalty variable on soft
knapsack constraint

R0001

All other variables in
constraint are binary

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 8

• A less straightforward but more compact linearization technique
• Look at a simpler version of this soft knapsack constraint

Minimize
C0001 + C0002 + C0003 + C0004 + C0005 + C0006 + C0007 + C0008 + C0009
+ C0010 + C0011 + C0012 + C0013 + C0014 + C0015 + C0016 + C0017 + C0018
+ C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027
+ C0028 + C0029 + C0030 + C0031 + C0032 + C0033 + C0034 + C0035 + C0036
+ C0037 + C0038 + C0039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045
+ C0046 + C0047 + C0048

Subject To
R0001a: - C0025 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 <= 6.5

C0673 = C0697 = 1 --> C0025 = 4.2 + 6.5 - 6.5 = 4.2
C0673 = C0721 = 1 --> C0025 = 4.2 + 5.95 - 6.5 = 3.65
C0697 = C0721 = 1 --> C0025 = 6.5 + 5.95 - 6.5 = 5.95
C0673 = C0697 = C0721 = 1 -> C0025 = 4.2 + 5.95 = 10.15

R0001a provides a linear representation of
C0025 = 4.2 C0673*C0697 + 3.65 C0673*C0721 + 5.95 C0697*C0721 - 3.65 C0697*C0673*C0721

Knapsack capacity
matches largest
knapsack weight

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 9

• A less straightforward but more compact linearization technique
• Implications for the full constraint R0001

• Could represent this complicated multilinear expression via a single constraint
• Suspect the creator of this model was just thinking about soft knapsack constraints

(no info on MIPLIB set regarding model origins).
• Can we modify this to help us linearize an expression just involving bilinear terms?

R0001: - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
+ 4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+ 4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385
+ 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
+ 4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
+ 5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745
+ 5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 6.5

C00025 = (linear combinations of all the bilinear terms) – (linear combinations of larger multilinear
terms)

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 10

• A less straightforward but more compact linearization technique
• Consider a different version of this constraint:

• All sums of knapsack weights other than C0697 will be <= the rhs
• → all multilinear expressions not involving C0697 contribute 0 violation to this soft constraint

• If C0697 = 1 and any other binary variable = 1 we get a contribution of the other binary
variable’s coefficient to the violation (e.g C0049 = 1 contributes 5.43 of violation).

• C0025= 5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534 C0865*C0697
• C0025 represents precisely a quadratic expression involving C0697 and other binaries

R0001': - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
+ 4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
+ 4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385
+ 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
+ 4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
+ 5.1 C0649 + 4.2 C0673 + 166.76 C0697 + 5.95 C0721 + 5.88 C0745
+ 5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 166.76

166.76 = sum of all knapsack weights except for C0697

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 11

• A less straightforward but more compact linearization technique
• C0025= 5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534

C0865*C0697
• C0025 represents precisely a quadratic expression involving C0697 and

other binaries
• Gurobi’s PreQLinearize = 2 setting uses this to do a more compact

linearization
• 𝑞$𝑦 ∗ 𝑥$ +⋯+ 𝑞%𝑦 ∗ 𝑥% (𝑦, 𝑥# 𝑏𝑖𝑛𝑎𝑟𝑦) is linearized as
𝑞$𝑥$ +⋯+ 𝑞%𝑥% + 𝑞𝑦 − 𝑝 ≤ 𝑞 (𝑞 = ∑#&$% 𝑞#) // 𝑞# > 0.
𝑝 = 𝑞$𝑦 ∗ 𝑥$ +⋯+ 𝑞%𝑦 ∗ 𝑥%

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 12

• Summary of Gurobi PreQLinearize settings: Still No Free Lunch
• PreQLinearize = 0: Convexify the nonconvex quadratic objective

• Move from nonconvex MIQP to convex MIQP👍
• No additional constraints👍
• Miss out on MILP features absent from convex MIQP solver👎
• Counterintuitive dual bound values that suggest possibly weak relaxations👎

• PreQLinearize = 1: Linearize the nonconvex quadratic objective with new
variable and constraints for each bilinear objective term
• Move from nonconvex MIQP to MILP👍💪

• Fairly strong MILP formulation
• Each bilinear term in the quadratic objective introduces one new variable and one

or two additional linear constraints👎
• PreQLinearize = 2: Linearize using the soft knapsack constraints

• Move from nonconvex MIQP to MILP👍
• Multiple bilinear terms modelled with one additional variable and constraint👍
• Weaker MILP formulation 👎

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 13

• Gurobi PreQLinearize settings
• Gurobi’s default logic to choose works fairly well.
• Use node log to determine the default selection
• Compare original model with presolved model
Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [0e+00, 0e+00]
QObjective range [2e-01, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+01, 1e+01]

Found heuristic solution: objective 246.2637697
Presolve time: 0.00s
Presolved: 1 rows, 50 columns, 50 nonzeros
Presolved model has 1275 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)

Default setting; convexification
(PreQLinearize = 0) selected.

No additional constraints; number of
quadratic terms has increased due

to convexification (one new nonzero
the 0 diagonal term associated the
square of each of the 50 variables)

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 14

• Gurobi PreQLinearize settings
• Gurobi’s default logic to choose works fairly well.
• Use node log to determine the default selection
• Compare original model with presolved model
Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [0e+00, 0e+00]
QObjective range [2e-01, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+01, 1e+01]

Found heuristic solution: objective 246.2637697
Presolve time: 0.00s
Presolved: 1226 rows, 1275 columns, 3725 nonzeros
Variable types: 0 continuous, 1275 integer (1275 binary)

Set PreQLinearize = 1 (simple
linearization).

One additional constraint and
variable for each bilinear term; no

quadratic objective terms in
presolved model.

Products of binaries fundamentals

Copyright © 2021, Gurobi Optimization, LLC 15

• Gurobi PreQLinearize settings
• Gurobi’s default logic to choose works fairly well.
• Use node log to determine the default selection
• Compare original model with presolved model
Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [0e+00, 0e+00]
QObjective range [2e-01, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+01, 1e+01]

Found heuristic solution: objective 246.2637697
Presolve time: 0.00s
Presolved: 50 rows, 99 columns, 1373 nonzeros
Variable types: 48 continuous, 51 integer (51 binary)

Set PreQLinearize = 2 (compact
linearization).

One additional constraint (49 total)
for all bilinear terms involving a

single variable; 49 additional penalty
variables no quadratic objective

terms in presolved model.

Copyright © 2021, Gurobi Optimization, LLC 16

An Interesting Example

• The p-Dispersion-Sum problem
• Given a set of n points with distances dij between points i and j, find the

subset of k points that maximizes the sum of the distances

𝑀𝑎𝑥 ∑!&$ 𝑑!$𝑥!𝑥$
𝑠. 𝑡. ∑$'() 𝑥$ = 𝑘

𝑥$ ∈ {0,1}
• Example discussed in Practical Guidelines for Solving Difficult MILPs

(https://www.sciencedirect.com/science/article/abs/pii/S1876735413000020
• Broader discussion in

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximu
m-dispersion.html

• We’ll come back to this later.

https://www.sciencedirect.com/science/article/abs/pii/S1876735413000020
http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html

Copyright © 2021, Gurobi Optimization, LLC 17

Solver options and parameters
• Solve directly as (non)convex MIQP

• Via Spatial Branch and Bound if using Gurobi
• Set NonConvex parameter to 2
• Not the best choice on the models considered in this presentation.

• Transform into a MILP or convex MIQP
• Choose between convexification and linearization (PreQlinearize parameter)
• Convexification

• More compact formulation, but weaker
• Linearization

• Larger, stronger formulation
• More opportunities to provide polyhedral cuts, use other MILP features
• Can increase intensity of RLT and BQP cuts

• For general bilinear terms, but particularly effective on products of binaries
• More later

• Zero-Half cuts when PreQLinearize = 1
• Good in general on constraints with all binaries, +-1, +-2 coefficients

Copyright © 2021, Gurobi Optimization, LLC 18

Results for the p-Dispersion-Sum problem, n=50, k=10

• 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒙𝒊𝒙𝒋
𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

𝒙𝒋 ∈ {𝟎, 𝟏}
• Gurobi 9.1, 2 Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz quad core processors
• Defaults: Out of memory with gap of 52.3% after 1.35 hours

• Gurobi by default chose to convexify rather than linearize
• PreQLinearize = 1: Optimal, 3.62 hours
• PreQLinearize = 2, RLTCuts = 2: Optimal, 1.55 hours
• Can we do better by tightening the formulation?

Copyright © 2021, Gurobi Optimization, LLC 19

Working with the existing formulation

• LP relaxation feasible region is the convex hull of the integer feasible points
• Won’t be able to use LP-based polyhedral cuts on this direct formulation
• Previous results indicate just linearizing (PreQLinearizing=1) is better, but still not particularly

effective given the problem size
• http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-

dispersion.html describes multiple ways to derive a single cut that uses both original x
binary variables and the linearization variables z

• 𝑴𝒂𝒙 ∑𝒊%𝒋𝒅𝒊𝒋𝒙𝒊𝒙𝒋 𝑴𝒂𝒙 ∑𝒊%𝒋𝒅𝒊𝒋𝒛𝒊𝒋
𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌 𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

𝒙𝒋 ∈ {𝟎, 𝟏} <linearization constraints>
∑𝒊%𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐

𝒙𝒋 ∈ {𝟎, 𝟏}
• Run time with cut drops from hours to < a minute
• Blog describes multiple ways to derive this cut, but how do we do it generically in a way

that extends to other models?

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html

Copyright © 2021, Gurobi Optimization, LLC 20

Working with the existing formulation

• 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒙𝒊𝒙𝒋 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒛𝒊𝒋
𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌 𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

𝒙𝒋 ∈ {𝟎, 𝟏} <linearization constraints>
∑𝒊&𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐

𝒙𝒋 ∈ {𝟎, 𝟏}
• Generic approach #1: RLT and aggregate (from the blog):
𝒙𝒊 ∗ (∑𝒋'𝟏𝒏 𝒙𝒋) = 𝒌 ∗ 𝒙𝒊 𝒙𝒊 ∗ (∑𝒋&𝒊𝒙𝒋 + ∑𝒋.𝒊𝒙𝒋) + 𝒙𝒊𝟐 = 𝒌 ∗ 𝒙𝒊

∑𝒋&𝒊 𝒛𝒊𝒋 + ∑𝒋.𝒊 𝒛𝒊𝒋 = (𝒌 − 𝟏) ∗ 𝒙𝒊
(add all n such constraints: ∑!'() (∑𝒋&𝒊 𝒛𝒊𝒋 + ∑𝒋.𝒊 𝒛𝒊𝒋) = (𝒌 − 𝟏) ∗ ∑𝒊'𝟏𝒏 𝒙𝒊
∑𝒋0𝒊 𝒛𝒊𝒋 = 𝒌 − 𝟏 ∗ 𝒌 2 ∗ ∑𝒊&𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏) ∑𝒊&𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐

𝒙𝒊𝟐=𝑥!

Copyright © 2021, Gurobi Optimization, LLC 21

Working with the existing formulation

• RLT approach of last slide 𝑴𝒂𝒙 ∑𝒊%𝒋𝒅𝒊𝒋𝒛𝒊𝒋
A bit complex, but generic 𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌
and effective <linearization constraints>

∑𝒊%𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐
𝒙𝒋 ∈ {𝟎, 𝟏}

• Generic approach #2: just use the “Padberg Graph”
• Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives
𝑧!# = 𝑥!𝑥#
𝑧!# ≤ 𝑥!
𝑧!# ≤ 𝑥#
𝑧!# ≥ 𝑥! + 𝑥# − 1

• Either way, we are determining the number of z variables that must be 1

𝑥"𝑥!
𝑧!"

Copyright © 2021, Gurobi Optimization, LLC 22

Working with the existing formulation

• Padberg graph for our dispersion problem 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒛𝒊𝒋
Complete graph since 𝒅𝒊𝒋 > 𝟎 𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

<linearization constraints>
∑𝒊&𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐

𝒙𝒋 ∈ {𝟎, 𝟏}

𝑥%
𝑥&

𝑥'
𝑥'(%

𝑥)

𝑥*

𝒛𝟏𝟐

𝒛𝟏𝟑

𝒛𝟏𝒌 𝒛𝟐𝒌

𝒛𝟑𝒌

• Given that k of the x variables must be 1, how
many of the z variables must be 1?

• WLOG, set the first k x variables to 1
• Induces a complete subgraph on the green

nodes associated with 𝑥%, … , 𝑥'
• Each edge in the subgraph identifies a z

variable that must be 1
• There are 𝒌 ∗ (𝒌 − 𝟏)/2 such edges

Source: http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf

𝒛𝟐𝟑

http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf

Copyright © 2021, Gurobi Optimization, LLC 23

Working with the existing formulation
• Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives

• He used the Padberg graph in a generic manner that just used the quadratic objective
• Generate cuts even when the problem has no constraints

• Example: 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 − (𝒛𝟏𝟐 + 𝒛𝟐𝟑 + 𝒛𝟏𝟑) ≤ 𝟏
• Can prove by contradiction
• Or by induction

• Extends to cliques of larger size
• Or by deriving as a zero half cut

• But Padberg figured it out first
• Or via facet defining inequalities

• Gurobi’s BQP cut feature makes use of this with cliques of size 3
• Traction for cut generation when model has few or no constraints

• Adding these Padberg Cuts for cliques of size 4 or more may be useful
• For 9.1.x with x >= 1, can set GURO_PAR_MOREBQPCUTS to 1
• For next major release and beyond, more refined improvements will be integrated with no need for

setting a hidden parameter.

𝑥*𝑥&

𝑥% 𝑧%*

𝑧&*

𝑧%&

Copyright © 2021, Gurobi Optimization, LLC 24

Working with the existing formulation

• 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒙𝒊𝒙𝒋 𝑴𝒂𝒙 ∑𝒊&𝒋𝒅𝒊𝒋𝒛𝒊𝒋
𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌 𝒔. 𝒕. ∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

𝒙𝒋 ∈ {𝟎, 𝟏} <linearization constraints>
∑𝒊&𝒋 𝒛𝒊𝒋 = 𝒌 ∗ (𝒌 − 𝟏)/𝟐

𝒙𝒋 ∈ {𝟎, 𝟏}
• Best time on original model: 1.55 hours (PreQLinearize=2, RLTCuts=2)
• Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 18

seconds
• Do the 3 constraint linearization described in this presentation: 8 seconds
• Add the cardinality cut to 3 constraint linearization model: 5 seconds

Copyright © 2021, Gurobi Optimization, LLC 25

Working with the existing formulation

• Does the success tightening the n=50, k=10 p-dispersion-sum model carry over
to other models?

• Consider the publicly available QPLIB models on which Gurobi exceeds or
comes close to the one hour time limit on the Mittelmann benchmark.

• Model 3772
• Convexify objective (PreQLinearize=0): 11.5% gap after 2 hours
• Linearize objective (PreQLinearize=1, Gurobi’s default choice): Optimal, 27.88

minutes
• Best non default settings: ZeroHalfCuts=2, RLTCuts=2: Optimal, 14.22 minutes
• No success so far tightening the formulation

• All original binaries can get set to 0
• All linearization variables can be set to 0

• No cardinality type cut like in the p-dispersion sum model is available

Copyright © 2021, Gurobi Optimization, LLC 26

Working with the existing formulation

• More QPLIB models
• Model 3775

• Convexify objective (PreQLinearize=0, Gurobi’s default choice): 27.32 minutes
• Linearize objective (PreQLinearize=1) 30.73 minutes
• Best non default settings found: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
• Tightening the existing formulation

• No explicit cardinality constraints on the original variables like in the p-dispersion-sum
problem

• Q matrix is not dense like in the p-dispersion-sum problem
• But we can ask a similar question: what is the minimum number of linearization binaries

that must be set to 1 in a feasible solution for the linearized MIQP?
• Formulate and solve the appropriate subMIP

Copyright © 2021, Gurobi Optimization, LLC 27

How many z variables must be 1?

• Model 3775 (continued)
• SubMIP solve for case where 𝑄!" ≥ 0:

min 𝑐'𝑥 + 𝑥'𝑄𝑥 min 𝑐'𝑥 + 𝑑'𝑧 min 𝑒'𝑧
[𝑠. 𝑡. 𝐴𝑥 ~ 𝑏]																																		[𝑠. 𝑡. 𝐴𝑥 ~ 𝑏]																								[𝑠. 𝑡. 𝐴𝑥 ~ 𝑏]

𝑥 ∈ {0,1} 𝐸$𝑥 + 𝐸"𝑧 ≤ 𝑝 𝐸$𝑥 + 𝐸"𝑧 ≤ 𝑝
𝑥, 𝑧 ∈ {0,1} 𝑥, 𝑧 ∈ {0,1}

• Cardinality	cut:	𝒆𝑻𝒛 ≥ 𝒛∗
• Best time on original model: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
• Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 15.40 minutes*
• Do the 3 constraint linearization described in this presentation: 49.18 minutes
• Add the cardinality cut to 3 constraint linearization model: 8.95 minutes*
*: Includes 32 sec. for subMIP solve

linearize

subMIP e=(1,1,…,1)

Copyright © 2021, Gurobi Optimization, LLC 28

Working with the existing formulation

• More QPLIB models
• Model 3587

• Convexify objective (PreQLinearize=0): Hopeless
• Linearize objective (PreQLinearize=1, Gurobi’s default choice) : 62.63 minutes
• Best non default settings found: 49.55 minutes (RLTCuts = ZeroHalfCuts = 2)
• subMIP yields a useful cardinality cut

• Gurobi linearized model: 15.37 minutes
• 3 constraint linearized model 12.58 minutes
• Includes 0.5 sec. for sub MIP solve
• Similar results giving 3 constraint linearized model to Gurobi without the cut

• Model 3614
• Appears to be a different instance of the same model as 3587
• Over 3x speedup adding cardinality cut to 3 constraint linearized model compared to

defaults (subMIP solve time only 0.02 sec.)

Copyright © 2021, Gurobi Optimization, LLC 29

Working with the existing formulation

• QPLIB models summary
• Discarded model 0752 due to high performance variability

• Found non default settings to improve performance on all 4 models
• Cardinality cut offered the best performance on the 3 of 4 models

• And all 3 on which it could be created.

Model name Defaults (minutes) Best non default Cardinality Cut
3772 27.88 14.22 ---------
3775 27.32 22.67 8.95
3587 62.63 49.55 12.58
3614 11.65 9.83 3.07

Working with the existing formulation

• Other results with sub MIP cuts
• Quadratic Assignment Problems (QAPs) from the QAPLIB set

• Known to be difficult for MIP solvers
• Sub MIP solves quickly
• Big speedups on had, nug QAPs of dimension 12
• Solved had, nug QAPs of dimension 14 and 16 that regular Gurobi cannot solve with defaults or

parameter tuning
• Doesn’t scale up to larger QAPs

• Sub MIP cuts require basic linearization
• Number of bilinear terms grows quadratically as dimension increases
• Node throughput slows dramatically as problem size increases

• Proprietary models from a prospect
• SubMIP solves remained far from optimality after over an hour
• Extended BQP cuts in 9.1.x and beyond were very effective

Copyright © 2021, Gurobi Optimization, LLC, Confidential30

Copyright © 2021, Gurobi Optimization, LLC 31

Reformulations

• Back to the p-Dispersion-Sum problem
• Cardinality based cut enabled Gurobi to solve the n=50, k=10 instance within 30

seconds
• But how well does it scale?
• An instance with n=100, k= 20 and the cardinality cut did not solve to optimality

in several hours, despite better gap
• Instead of maximizing the sum of distances, maximize the minimum distance

among the k chosen points (and k*(k-1)/2 associated distances):
𝑴𝒂𝒙 𝜟
𝒔. 𝒕. ∆≤ 𝒅𝒊𝒋 +𝑴 𝟏 − 𝒙𝒊 ∗ 𝒙𝒋 // 𝑴 = 𝐦𝐚𝐱𝒅𝒊𝒋

∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌
𝒙𝒋 ∈ {𝟎, 𝟏} (source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html)

Only binding when
𝑥! = 𝑥"=1

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html

Copyright © 2021, Gurobi Optimization, LLC 32

Reformulations

• 𝑴𝒂𝒙 𝜟
𝒔. 𝒕. ∆≤ 𝒅𝒊𝒋 +𝑴 𝟏 − 𝒙𝒊 ∗ 𝒙𝒋 ∆≤ 𝒅𝒊𝒋 +𝑴 𝟏 − 𝒙𝒊) +𝑴(𝟏 − 𝒙𝒋)

∑𝒋'𝟏𝒏 𝒙𝒋 = 𝒌

𝒙𝒋 ∈ {𝟎, 𝟏} (Formulation 1) (Formulation 2)
• Formulation 1 (n=100, k=20)

• Defaults (PreQLinearize=1): 16 seconds
• PreQLinearize=0: Timed out after 3 hours (solving nonconvex MIQCP)

• Formulation 2 (n=100, k=20)
• Defaults: 2 seconds

(source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html)

Only binding when
𝑥! = 𝑥"=1

Rotated cone
constraint

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html

Copyright © 2021, Gurobi Optimization, LLC 33

A few loose ends
• The subMIP and cardinality cut approaches required direct access to the

linearization variables
• Can generate and work on the presolved model
• Easier to just do the simple linearization (PreQLinearize=1) yourself

def qlinearize(model, useobj, zvars = None):
qobj = model.getObjective()
t = model.ModelSense
linpart = qobj.getLinExpr()
model.setObjective(linpart)
dupdict = {}
for k in range(qobj.size()):

qcoef = qobj.getCoeff(k)
xi = qobj.getVar1(k)
xj = qobj.getVar2(k)
key1 = (xi, xj)
key2 = (xj, xi)
if key1 in dupdict or key2 in dupdict:

continue # this product already linearized; don't duplicate
else:

dupdict[key1] = 1 # first time this xi, xj pair encountered.
dupdict[key2] = 1 # proceed with linearization.

qcoeff = qobj.getCoeff(k)
zname = "z_" + xi.VarName + "_" + xj.VarName
zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)
suffix = xi.VarName + "_" + xj.VarName
skip1 = False
skip2 = False
if useobj:

down = qcoef*t > 0.0
if down:

skip1 = True
else: # qobj only contains nonzero Q elements

skip2 = True

if not skip1:
cname = "lin1_"+ suffix
model.addConstr(zij - xi <= 0, name = cname)
cname = "lin2_"+ suffix
model.addConstr(zij - xj <= 0, name = cname)

if not skip2:
cname = "lin3_"+ suffix
model.addConstr(xi + xj - zij <= 1, name = cname)

if zvars != None:
zvars.append(zij)

(appendix of this deck contains this code in
a size that can actually be read)

Copyright © 2021, Gurobi Optimization, LLC 34

A few loose ends
• Sometimes better to generate all 3 constraints associated with PreQLinearize=1

instead of the 1 or 2 that Gurobi generates
• Not needed for correctness, but can yield tighter relaxations
• Under investigation to try to get the tighter formulation without the additional

constraint(s)

Copyright © 2021, Gurobi Optimization, LLC 35

A few loose ends
• MILPs that are actually MINLPs in disguise

• We already saw this with neos-911970
• Soft knapsack constraints were a multinomial objective in disguise

• Don’t necessarily want to reformulate the MILP into the MINLP
• But do want to consider both formulations, consider anything in the unused formulation

that will help the other run faster (e.g. create the Padberg Graph)
• Other examples

• Overlap or interference conditions
• Logical conditions (e.g. SAT models)

• z variable models an and for the two binary x
variables

• The open MIPLIB model neos-2629914-sudost
• Solve the MILP or MINLP, but use info from both

to improve performance

𝑧"# = 𝑥"𝑥#
𝑧"# ≤ 𝑥"
𝑧"# ≤ 𝑥#
𝑧"# ≥ 𝑥" + 𝑥# − 1

Copyright © 2021, Gurobi Optimization, LLC 36

Key Takeaways
• Non Default parameter settings can help

• PreQLinearize
• RLT, BQP and ZeroHalf cuts
• Don’t forget the NodeMethod parameter to improve node LP solve times

• When tightening the formulation, need to consider the linearization variables
• Linearized model offers more opportunities to tighten than convexified model

• Albeit with potentially slower node throughput
• Gurobi’s linearizations emphasize compact formulations

• Sometimes larger, basic linearization may work better
• Easy to implement (see Appendix)

• RLT type strategy: Multiply linear constraints by binary variable, linearize and combine
constraints

• Padberg graph can yield insights
• Solve subMIPs including the linearization variables to determine bounds on the number of

linearization variables that must be 1
• Look for reformulation opportunities

• Make sure quadratic conditions involving binaries are really quadratic.
• MINLP formulation in disguise can be used to tighten MILP formulation being used

References and Resources

1. Dispersion Problems (Kalvelagen):
http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-
dispersion.html

2. Products of binaries (Achterberg): https://www.gurobi.com/resource/products-of-variables-in-
mixed-integer-programming/

3. More on the Padberg Graph and products of binaries (Klotz):
http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf

4. Padberg’s original Boolean Quadric Polytope Paper:
https://link.springer.com/article/10.1007/BF01589101

5. Reformulating IPs as QUBOs (Glover, Kochenberger, Du)
https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-

and-using-q/17436666
6. Other literature on linearizations of products of binaries:

https://www.hindawi.com/journals/jam/2020/5974820/

Copyright © 2021, Gurobi Optimization, LLC 37

http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html
https://www.gurobi.com/resource/products-of-variables-in-mixed-integer-programming/
http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf
https://link.springer.com/article/10.1007/BF01589101
https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666

Specialized Strategies for Products of Binary Variables

Thank You

Questions?

Copyright © 2021, Gurobi Optimization, LLC, Confidential38

Appendix

• Some sample code using the Gurobi Python API to do the basic linearization

Copyright © 2021, Gurobi Optimization, LLC 39

def qlinearize(model, useobj, zvars = None):
qobj = model.getObjective()
t = model.ModelSense
linpart = qobj.getLinExpr()
model.setObjective(linpart)
dupdict = {}
for k in range(qobj.size()):

qcoef = qobj.getCoeff(k)
xi = qobj.getVar1(k)
xj = qobj.getVar2(k)
key1 = (xi, xj)
key2 = (xj, xi)
if key1 in dupdict or key2 in dupdict:

continue # this product already linearized; don't duplicate
else:

dupdict[key1] = 1 # first time this xi, xj pair encountered.
dupdict[key2] = 1 # proceed with linearization.

qcoeff = qobj.getCoeff(k)
zname = "z_" + xi.VarName + "_" + xj.VarName
zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)

Appendix

• Some sample code using the Gurobi Python API to do the basic linearization

Copyright © 2021, Gurobi Optimization, LLC 40

suffix = xi.VarName + "_" + xj.VarName
skip1 = False
skip2 = False
if useobj:

down = qcoef*t > 0.0
if down:

skip1 = True
else: # qobj only contains nonzero Q elements

skip2 = True

if not skip1:
cname = "lin1_"+ suffix
model.addConstr(zij - xi <= 0, name = cname)
cname = "lin2_"+ suffix
model.addConstr(zij - xj <= 0, name = cname)

if not skip2:
cname = "lin3_"+ suffix
model.addConstr(xi + xj - zij <= 1, name = cname)

if zvars != None:
zvars.append(zij)

