Specialized Strategies for Products of Binary Variables

The World's Fastest Solver

Ed Klotz, Ph.D. (klotz@gurobi.com)
February 2021

Products of binaries

- Problem formulation:

$$
\begin{aligned}
& \min \left[c^{T} x\right]+x^{T} Q x \quad / / \text { no assumptions on convexity of } x^{T} Q x \\
& {[\text { s.t. } A x \sim b]} \\
& \quad x \in\{0,1\}
\end{aligned}
$$

- Possibly nonconvex MIQP
- Can reformulate constraints into objective using penalties (QUBO)
- Good formulation for Quantum Annealers, not so good for solvers like Gurobi
- https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666

outline

- Products of binaries fundamentals
- Solver options and parameters
- Working with the existing formulation
- Reformulations

Products of binaries fundamentals

- Solution strategies
- Solve as convex or nonconvex MIQP
- Still must deal with the quadratic objective
- Starting with version 9.0, Gurobi can solve nonconvex MIQPs (and MIQCPs)
- Transform into a convex MIQP or a MILP
- Convexification of objective ($x_{i}^{2}=x_{i}$ for binary variables)

$$
\begin{aligned}
& \text { - } x_{i} x_{j}=x_{i} x_{j}+(\underbrace{x_{i}^{2}-x_{i}}_{0})+(\underbrace{x_{j}^{2}-x_{j}}_{0})=(\underbrace{x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}}_{\text {convex }})-x_{i}-x_{j} \\
& \text { - } x^{T} Q x=x^{T} Q x+\underbrace{x^{T} D x-d^{T} x}_{0}=x^{T} \underbrace{Q+D}_{\text {PSD }}) x-d^{T} x
\end{aligned}
$$

Products of binaries fundamentals

- PreQLinearize $=0$: Convexification of objective ($x_{i}^{2}=x_{i}$ for binary variables)
- A nonconvex MIQP becomes a convex one without adding constraints
- But there is no free lunch

$$
x_{i} x_{j}=x_{i} x_{j}+\underbrace{\left(x_{i}^{2}-x_{i}\right)}_{0}+\underbrace{\left(x_{j}^{2}-x_{j}\right)}_{0}=\underbrace{\left(x_{i}^{2}+x_{i} x_{j}+x_{j}^{2}\right)}_{\text {convex }}-\underbrace{x_{i}-x_{j}}_{\text {relaxation }}
$$

- Consider $x_{i}=x_{j}=.5$ in

$$
\begin{gathered}
\min x_{i} x_{j} \text { s.t } \\
x_{i}+x_{j}=1 \\
x_{i}, x_{j} \geq 0
\end{gathered}
$$

- Objective value in relaxation is -.25
- Potential for negative dual bound values for convexified model that has an obvious lower bound of 0 in the original model
- As magnitude of D increases, so does the weakness in the dual bound of the convexified problem

Products of binaries fundamentals

- Solution strategies

- Linearize a convex or nonconvex MIQP into a MILP
- Simplest linearization technique: do the following for each product of binaries in the model (PreQLinearize=1)
- $z_{i j}=x_{i} x_{j}$
$\left.\begin{array}{l}z_{i j} \leq x_{i} \\ z_{i j} \leq x_{j}\end{array}\right\}$ (only need these two if objective pushes $z_{i j}$ up)
$z_{i j} \geq x_{i}+x_{j}-1$ \} (only need this one if objective pushes $z_{i j}$ down)
- Add the 3 linear constraints to the model
- Replace each occurrence of $x_{i} x_{j}$ in the model with $z_{i j}$
- We've transformed a (possibly nonconvex MIQP) into a MILP
- Benefit from various Gurobi features available for MILP but not MIQP
- Still no free lunch
- We added 1-3 constraints for each product of binaries.

Products of binaries fundamentals

- Solution strategies

- Linearize a convex or nonconvex MIQP into a MILP
- A less straightforward but more compact linearization technique - Consider the MIPLIB 2010 model neos-911970

```
Minimize
C0001 + C0002 + C0003 + C0004 + C0005 + C0006 + C0007 + C0008 + C0009
    +C0010 + C0011 + C0012 + C0013 + C0014 + C0015 + C0016 + C0017 + C0018
    + C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027
    +C0028 + C0029 + C0030 + C0031 + C0032 + C0033 + C0034 + C0035 + C0036
    +C0037 + C0038 + C0039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045
    + C0046 + C0047 + C0048
Subject To
R0001: - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145
    +4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265
    + 4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385
    + 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505
    +4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625
    + 5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745
+ 5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= 6.5
```

```
Penalty variable on soft
```

Penalty variable on soft
knapsack constraint
R0001

```
\(\qquad\)
constraint are binary
```


Products of binaries fundamentals

- A less straightforward but more compact linearization technique
- Look at a simpler version of this soft knapsack constraint

Minimize

```
C0001 + C0002 + C0003 + C0004 + C0005 + C0006 + C0007 + C0008 + C0009
    + C0010 + C0011 + C0012 + C0013 + C0014 + C0015 + C0016 + C0017 + C0018
    + C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027
    +C0028 + C0029 + C0030 + C0031 + C0032 + C0033 + C0034 + C0035 + C0036
    +C0037 + C0038 + C0039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045
    + C0046 + C0047 + C0048
```

Subject To
R0001a: - $\underline{-0025}+4.2 \mathrm{C} 0673+6.5 \underline{\mathrm{C0697}}+5.95 \mathrm{C} 0721 \leq=6.5$
C0673 $=$ C0697 = 1 --> C0025 $=4.2+6.5-6.5=4.2$

```
C0673 = C0721 = 1 --> C0025 = 4.2 + 5.95-6.5 = 3.65
C0697 = C0721 = 1 --> C0025 = 6.5 + 5.95-6.5 = 5.95
C0673 = C0697 = C0721 = 1 -> C0025 = 4.2 + 5.95 = 10.15
```

R0001a provides a linear representation of

```
C0025 = 4.2 C0673*C0697 + 3.65 C0673*C0721 + 5.95 C0697*C0721 - 3.65 C0697*C0673*C0721
```


Products of binaries fundamentals

- A less straightforward but more compact linearization technique
- Implications for the full constraint R0001

$$
\begin{aligned}
& \text { R0001: - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + } 5 \text { C0145 } \\
& +4.39 \mathrm{C} 0169+4.07 \mathrm{C} 0193+4.56 \mathrm{C} 0217+4.03 \mathrm{C} 0241+3.3 \mathrm{C} 0265 \\
& +4.39 \mathrm{C} 0289+5.64 \mathrm{C} 0313+5.9 \mathrm{C} 0337+3.57 \mathrm{C} 0361+6.4 \mathrm{C} 0385 \\
& +3.94 \mathrm{C} 0409+4.5 \mathrm{C} 0433+4.67 \mathrm{C} 0457+3.88 \mathrm{C} 0481+4.18 \mathrm{C} 0505 \\
& +4.31 \mathrm{C} 0529+4.63 \mathrm{C} 0553+4.74 \mathrm{C} 0577+5.5 \mathrm{C} 0601+5.1 \mathrm{C} 0625 \\
& \text { +5.1 C0649 + 4.2 C0673 + 6.5 C0697 + 5.95 C0721 + 5.88 C0745 } \\
& +5.77 \mathrm{C} 0769+5.36 \mathrm{C} 0793+5.64 \mathrm{C} 0817+5.04 \mathrm{C} 0841+5.53 \mathrm{C} 0865 \leq=6.5
\end{aligned}
$$

C00025 $=$ (linear combinations of all the bilinear terms) - (linear combinations of larger multilinear terms)

- Could represent this complicated multilinear expression via a single constraint
- Suspect the creator of this model was just thinking about soft knapsack constraints (no info on MIPLIB set regarding model origins).
- Can we modify this to help us linearize an expression just involving bilinear terms?

Products of binaries fundamentals

- A less straightforward but more compact linearization technique
- Consider a different version of this constraint:

$$
\begin{aligned}
& \text { R0001': - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + } 5 \text { C0145 } \\
& +4.39 \mathrm{C} 0169+4.07 \mathrm{C} 0193+4.56 \mathrm{C} 0217+4.03 \mathrm{C} 0241+3.3 \mathrm{C} 0265 \\
& +4.39 \mathrm{C} 0289+5.64 \mathrm{C} 0313+5.9 \mathrm{C} 0337+3.57 \mathrm{C} 0361+6.4 \mathrm{C} 0385 \\
& +3.94 \mathrm{C} 0409+4.5 \mathrm{C} 0433+4.67 \mathrm{C} 0457+3.88 \mathrm{C} 0481+4.18 \mathrm{C} 0505 \\
& +4.31 \mathrm{C} 0529+4.63 \mathrm{C} 0553+4.74 \mathrm{C} 0577+5.5 \mathrm{C} 0601+5.1 \mathrm{C} 0625 \\
& +5.1 \mathrm{C} 0649+4.2 \mathrm{C} 0673+166.76 \mathrm{C} 0697+5.95 \mathrm{C} 0721+5.88 \mathrm{C} 0745 \\
& +5.77 \mathrm{C} 0769+5.36 \mathrm{C} 0793+5.64 \mathrm{C} 0817+5.04 \mathrm{C} 0841+5.53 \mathrm{C} 0865<=\underline{166.76}
\end{aligned}
$$

166.76 = sum of all knapsack weights except for C0697

- All sums of knapsack weights other than C0697 will be <= the rhs
- \rightarrow all multilinear expressions not involving C0697 contribute 0 violation to this soft constraint
- If C0697 = 1 and any other binary variable $=1$ we get a contribution of the other binary variable's coefficient to the violation (e.g C0049 $=1$ contributes 5.43 of violation).
- C0025 = 5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534 C0865*C0697
- C0025 represents precisely a quadratic expression involving C0697 and other binaries

Products of binaries fundamentals

- A less straightforward but more compact linearization technique
- C0025=5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534 C0865*C0697
- C0025 represents precisely a quadratic expression involving C0697 and other binaries
- Gurobi's PreQLinearize $=2$ setting uses this to do a more compact linearization
- $q_{1} y * x_{1}+\cdots+q_{n} y * x_{n}\left(y, x_{j}\right.$ binary $)$ is linearized as
$q_{1} x_{1}+\cdots+q_{n} x_{n}+q y-p \leq q \quad\left(q=\sum_{j=1}^{n} q_{j}\right) \quad / / q_{j}>0$. $p=q_{1} y * x_{1}+\cdots+q_{n} y * x_{n}$

Products of binaries fundamentals

- Summary of Gurobi PreQLinearize settings: Still No Free Lunch
- PreQLinearize = 0: Convexify the nonconvex quadratic objective
- Move from nonconvex MIQP to convex MIQP
- No additional constraints
- Miss out on MILP features absent from convex MIQP solver
- Counterintuitive dual bound values that suggest possibly weak relaxations $\sqrt[F]{ }$
- PreQLinearize = 1: Linearize the nonconvex quadratic objective with new variable and constraints for each bilinear objective term
- Move from nonconvex MIQP to MILP
- Fairly strong MILP formulation
- Each bilinear term in the quadratic objective introduces one new variable and one or two additional linear constraints
- PreQLinearize = 2: Linearize using the soft knapsack constraints
- Move from nonconvex MIQP to MILP
- Multiple bilinear terms modelled with one additional variable and constraint
- Weaker MILP formulation \mathfrak{F}

Products of binaries fundamentals
 - Gurobi PreQLinearize settings

- Gurobi's default logic to choose works fairly well.
- Use node log to determine the default selection
- Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary) Coefficient statistics:
Matrix range $\quad[1 \mathrm{e}+00,1 \mathrm{e}+00]$
Objective range $[0 \mathrm{e}+00,0 \mathrm{e}+00]$
QObjective range [2e-01, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range $\quad[1 e+01,1 e+01]$
Found heuristic solution: objective 246.2637697
Presolve time: 0.00s

Default setting; convexification (PreQLinearize = 0) selected. No additional constraints; number of quadratic terms has increased due to convexification (one new nonzero the 0 diagonal term associated the square of each of the 50 variables)

Presolved: 1 rows, 50 columns, 50 nonzeros

Presolved model has 1275 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary)

Products of binaries fundamentals

- Gurobi PreQLinearize settings
- Gurobi's default logic to choose works fairly well.
- Use node log to determine the default selection
- Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros
Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)
Coefficient statistics:
Matrix range $\quad[1 e+00,1 e+00]$
Objective range $[0 \mathrm{e}+00,0 \mathrm{e}+00]$
QObjective range [2e-01, $2 \mathrm{e}+01]$
Bounds range [1e+00, 1e+00]
RHS range [1e+01, 1e+01]
Found heuristic solution: objective 246.263769
Presolve time: 0.00s
Presolved: 1226 rows, 1275 columns, 3725 nonzeros
Variable types: 0 continuous, 1275 integer (1275 binary)

Set PreQLinearize = 1 (simple linearization).
One additional constraint and variable for each bilinear term; no quadratic objective terms in presolved model.

Products of binaries fundamentals

- Gurobi PreQLinearize settings

- Gurobi's default logic to choose works fairly well.
- Use node log to determine the default selection
- Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: 0xe647a136
Model has 1225 quadratic objective terms
Variable types: 0 continuous, 50 integer (50 binary)
Coefficient statistics:
Matrix range $\quad[1 e+00,1 e+00]$
Objective range $[0 \mathrm{e}+00,0 \mathrm{e}+00]$
QObjective range [2e-01, $2 \mathrm{e}+01]$
Bounds range [1e+00, 1e+00]
RHS range [1e+01, 1e+01]
Found heuristic solution: objective 246.26

Set PreQLinearize = 2 (compact linearization).
One additional constraint (49 total)
for all bilinear terms involving a single variable; 49 additional penalty variables no quadratic objective terms in presolved model.

Presolve time: 0.00s
Presolved: 50 rows, 99 columns, 1373 nonzeros
Variable types: 48 continuous, 51 integer (51 binary)

An Interesting Example

- The p-Dispersion-Sum problem
- Given a set of n points with distances dij between points i and j, find the subset of k points that maximizes the sum of the distances

$$
\begin{array}{ll}
\text { Max } & \sum_{i<j} d_{i j} x_{i} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} x_{j}=k \\
& x_{j} \in\{0,1\}
\end{array}
$$

- Example discussed in Practical Guidelines for Solving Difficult MILPs (https://www.sciencedirect.com/science/article/abs/pii/S1876735413000020
- Broader discussion in http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximu m-dispersion.html
- We'll come back to this later.

Solver options and parameters

- Solve directly as (non)convex MIQP
- Via Spatial Branch and Bound if using Gurobi
- Set NonConvex parameter to 2
- Not the best choice on the models considered in this presentation.

- Transform into a MILP or convex MIQP

- Choose between convexification and linearization (PreQlinearize parameter)
- Convexification
- More compact formulation, but weaker
- Linearization
- Larger, stronger formulation
- More opportunities to provide polyhedral cuts, use other MILP features
- Can increase intensity of RLT and BQP cuts
- For general bilinear terms, but particularly effective on products of binaries
- More later
- Zero-Half cuts when PreQLinearize = 1
- Good in general on constraints with all binaries, +-1, +-2 coefficients

Results for the p-Dispersion-Sum problem, $\mathrm{n}=50, \mathrm{k}=10$

- $\quad \operatorname{Max} \sum_{i<j} d_{i j} x_{i} x_{j}$

$$
\text { s.t. } \quad \begin{aligned}
\sum_{j=1}^{n} x_{j} & =k \\
x_{j} & \in\{0,1\}
\end{aligned}
$$

- Gurobi 9.1, 2 Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz quad core processors
- Defaults: Out of memory with gap of 52.3% after 1.35 hours
- Gurobi by default chose to convexify rather than linearize
- PreQLinearize = 1: Optimal, 3.62 hours
- PreQLinearize = 2, RLTCuts = 2: Optimal, 1.55 hours
- Can we do better by tightening the formulation?

Working with the existing formulation

- LP relaxation feasible region is the convex hull of the integer feasible points
- Won't be able to use LP-based polyhedral cuts on this direct formulation
- Previous results indicate just linearizing (PreQLinearizing=1) is better, but still not particularly effective given the problem size
- http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximumdispersion.html describes multiple ways to derive a single cut that uses both original x binary variables and the linearization variables z
- $\operatorname{Max} \sum_{i<j} d_{i j} x_{i} x_{j}$
$\operatorname{Max} \sum_{i<j} d_{i j} z_{i j}$

$$
\begin{aligned}
\text { s.t. } \quad \sum_{j=1}^{n} x_{j} & =k \\
x_{j} & \in\{0,1\}
\end{aligned}
$$

s.t. $\quad \sum_{j=1}^{n} x_{j}=k$
<linearization constraints>
$\sum_{i<j} z_{i j}=k *(k-1) / 2$

$$
x_{j} \in\{\mathbf{0}, \mathbf{1}\}
$$

- Run time with cut drops from hours to < a minute
- Blog describes multiple ways to derive this cut, but how do we do it generically in a way that extends to other models?

Working with the existing formulation

- Max $\sum_{i<j} d_{i j} x_{i} x_{j}$
s.t. $\quad \sum_{j=1}^{n} x_{j}=k$

$$
x_{j} \in\{\mathbf{0}, \mathbf{1}\}
$$

$\operatorname{Max} \sum_{i<j} d_{i j} z_{i j}$
s.t. $\sum_{j=1}^{n} x_{j}=k$
<linearization constraints>

$$
\begin{gathered}
\sum_{i<j} z_{i j}=k *(k-1) / 2 \\
x_{j} \in\{0,1\}
\end{gathered}
$$

- Generic approach \#1: RLT and aggregate (from the blog):
$x_{i}^{2}=x_{i}$

```
xi* (\sumj=1 利)=k* 和
```


(add all n such constraints: $\quad \sum_{i=1}^{n}\left(\sum_{j<i} z_{i j}+\sum_{j>i} z_{i j}\right)=(k-1) * \sum_{i=1}^{n} x_{i}$
$\Longrightarrow \sum_{j \neq i} z_{i j}=(k-1) * k \sum 2 * \sum_{i<j} z_{i j}=k *(k-1) \Longrightarrow \sum_{i<j} z_{i j}=k *(k-1) / 2$

- RLT approach of last slide A bit complex, but generic and effective

$$
\begin{aligned}
& \operatorname{Max} \sum_{i<j} d_{i j} z_{i j} \\
& \quad \text { s.t. } \sum_{j=1}^{n} x_{j}=k \\
& \text { <linearization constraints> } \\
& \quad \sum_{i<j} z_{i j}=k *(k-1) / 2 \\
& \quad x_{j} \in\{0,1\}
\end{aligned}
$$

- Generic approach \#2: just use the "Padberg Graph"
- Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j} \\
z_{i j} & \leq x_{i} \\
z_{i j} & \leq x_{j} \\
z_{i j} & \geq x_{i}+x_{j}-1
\end{aligned}
$$

- Either way, we are determining the number of z variables that must be 1

- Padberg graph for our dispersion problem

Complete graph since $d_{i j}>0$

$\operatorname{Max} \sum_{i<j} d_{i j} z_{i j}$

$$
\text { s.t. } \quad \sum_{j=1}^{n} x_{j}=k
$$

<linearization constraints>
$\sum i<j Z_{i j}=\pi *(K-1) / 2$

$$
x_{j} \in\{\mathbf{0}, \mathbf{1}\}
$$

- Given that k of the x variables must be 1 , how many of the z variables must be 1?
- WLOG, set the first $\mathrm{k} x$ variables to 1
- Induces a complete subgraph on the green nodes associated with x_{1}, \ldots, x_{k}
- Each edge in the subgraph identifies a z variable that must be 1
- There are $\boldsymbol{k} *(\boldsymbol{k}-\mathbf{1}) / 2$ such edges

Source: http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf

Working with the existing formulation

- Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives
- He used the Padberg graph in a generic manner that just used the quadratic objective
- Generate cuts even when the problem has no constraints
- Example: $x_{1}+x_{2}+x_{3}-\left(z_{12}+z_{23}+z_{13}\right) \leq 1$
- Can prove by contradiction
- Or by induction
- Extends to cliques of larger size
- Or by deriving as a zero half cut
- But Padberg figured it out first
- Or via facet defining inequalities

- Gurobi's BQP cut feature makes use of this with cliques of size 3
- Traction for cut generation when model has few or no constraints
- Adding these Padberg Cuts for cliques of size 4 or more may be useful
- For 9.1.x with x >= 1 , can set GURO_PAR_MOREBQPCUTS to 1
- For next major release and beyond, more refined improvements will be integrated with no need for setting a hidden parameter.

Working with the existing formulation

- Max $\sum_{i<j} d_{i j} x_{i} x_{j}$

$$
\begin{aligned}
\text { s.t. } \quad \sum_{j=1}^{n} x_{j} & =k \\
x_{j} & \in\{\mathbf{0}, \mathbf{1}\}
\end{aligned}
$$

$\operatorname{Max} \sum_{i<j} d_{i j} z_{i j}$
s.t. $\sum_{j=1}^{n} x_{j}=k$
<linearization constraints>

$$
\sum_{i<j} z_{i j}=k *(k-1) / 2
$$

$$
x_{j} \in\{\mathbf{0}, \mathbf{1}\}
$$

- Best time on original model: $\mathbf{1 . 5 5}$ hours (PreQLinearize=2, RLTCuts=2)
- Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 18 seconds
- Do the 3 constraint linearization described in this presentation: 8 seconds
- Add the cardinality cut to 3 constraint linearization model: 5 seconds

Working with the existing formulation

- Does the success tightening the $\mathrm{n}=50, \mathrm{k}=10 \mathrm{p}$-dispersion-sum model carry over to other models?
- Consider the publicly available QPLIB models on which Gurobi exceeds or comes close to the one hour time limit on the Mittelmann benchmark.
- Model 3772
- Convexify objective (PreQLinearize=0): 11.5\% gap after 2 hours
- Linearize objective (PreQLinearize=1, Gurobi's default choice): Optimal, 27.88 minutes
- Best non default settings: ZeroHalfCuts=2, RLTCuts=2: Optimal, 14.22 minutes
- No success so far tightening the formulation
- All original binaries can get set to 0
- All linearization variables can be set to 0
- No cardinality type cut like in the p-dispersion sum model is available

Working with the existing formulation

- More QPLIB models

- Model 3775
- Convexify objective (PreQLinearize=0, Gurobi's default choice): 27.32 minutes
- Linearize objective (PreQLinearize=1) 30.73 minutes
- Best non default settings found: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
- Tightening the existing formulation
- No explicit cardinality constraints on the original variables like in the p-dispersion-sum problem
- Q matrix is not dense like in the p -dispersion-sum problem
- But we can ask a similar question: what is the minimum number of linearization binaries that must be set to 1 in a feasible solution for the linearized MIQP?
- Formulate and solve the appropriate subMIP

How many z variables must be 1 ?

- Model 3775 (continued)
- SubMIP solve for case where $Q_{i j} \geq 0$:

- Cardinality cut: $\boldsymbol{e}^{T} \boldsymbol{Z} \geq \mathbf{z}^{*}$
- Best time on original model: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
- Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 15.40 minutes*
- Do the 3 constraint linearization described in this presentation: 49.18 minutes
- Add the cardinality cut to 3 constraint linearization model: 8.95 minutes*
*: Includes 32 sec. for subMIP solve

Working with the existing formulation

- More QPLIB models

- Model 3587
- Convexify objective (PreQLinearize=0): Hopeless
- Linearize objective (PreQLinearize=1, Gurobi's default choice) : 62.63 minutes
- Best non default settings found: 49.55 minutes (RLTCuts = ZeroHalfCuts = 2)
- subMIP yields a useful cardinality cut
- Gurobi linearized model: 15.37 minutes
- 3 constraint linearized model 12.58 minutes
- Includes 0.5 sec . for sub MIP solve
- Similar results giving 3 constraint linearized model to Gurobi without the cut
- Model 3614
- Appears to be a different instance of the same model as 3587
- Over $3 x$ speedup adding cardinality cut to 3 constraint linearized model compared to defaults (subMIP solve time only 0.02 sec .)

Working with the existing formulation

- QPLIB models summary
- Discarded model 0752 due to high performance variability

Model name	Defaults (minutes)	Best non default	Cardinality Cut
$\mathbf{3 7 7 2}$	27.88	14.22	-------
$\mathbf{3 7 7 5}$	27.32	22.67	8.95
$\mathbf{3 5 8 7}$	62.63	49.55	12.58
$\mathbf{3 6 1 4}$	11.65	9.83	3.07

- Found non default settings to improve performance on all 4 models
- Cardinality cut offered the best performance on the 3 of 4 models
- And all 3 on which it could be created.

Working with the existing formulation

- Other results with sub MIP cuts
- Quadratic Assignment Problems (QAPs) from the QAPLIB set
- Known to be difficult for MIP solvers
- Sub MIP solves quickly
- Big speedups on had, nug QAPs of dimension 12
- Solved had, nug QAPs of dimension 14 and 16 that regular Gurobi cannot solve with defaults or parameter tuning
- Doesn't scale up to larger QAPs
- Sub MIP cuts require basic linearization
- Number of bilinear terms grows quadratically as dimension increases
- Node throughput slows dramatically as problem size increases
- Proprietary models from a prospect
- SubMIP solves remained far from optimality after over an hour
- Extended BQP cuts in 9.1.x and beyond were very effective

Reformulations

- Back to the p-Dispersion-Sum problem
- Cardinality based cut enabled Gurobi to solve the $\mathrm{n}=50, \mathrm{k}=10$ instance within 30 seconds
- But how well does it scale?
- An instance with n=100, k=20 and the cardinality cut did not solve to optimality in several hours, despite better gap
- Instead of maximizing the sum of distances, maximize the minimum distance among the k chosen points (and $\mathrm{k}^{\star}(\mathrm{k}-1) / 2$ associated distances):
Max Δ

$$
\begin{array}{cc}
\text { s.t. } \Delta \leq \boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}}+\boldsymbol{M}\left(\mathbf{1}-\boldsymbol{x}_{\boldsymbol{i}} * \boldsymbol{x}_{\boldsymbol{j}}\right) & / / \boldsymbol{M}=\max \boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}}
\end{array}
$$

Reformulations

Only binding when
$x_{i}=x_{j}=1$

- Max Δ

$$
\text { s.t. } \left.\Delta \leq d_{i j}+M\left(1-\widehat{x_{i} * x_{j}}\right) \quad \Longleftrightarrow \quad \Delta \leq d_{i j}+M\left(1-x_{i}\right)+M\left(1-x_{j}\right)\right)
$$

$$
\sum_{j=1}^{n} x_{j}=k
$$

$$
x_{j} \in\{0,1\} \quad \text { (Formulation 1) }
$$

- Formulation 1 ($\mathrm{n}=100, \mathrm{k}=20$)
- Defaults (PreQLinearize=1): 16 seconds
- PreQLinearize=0: Timed out after 3 hours (solving nonconvex MIQCP)
- Formulation 2 ($\mathrm{n}=100, \mathrm{k}=20$)
- Defaults: 2 seconds

A few loose ends

- The subMIP and cardinality cut approaches required direct access to the linearization variables
- Can generate and work on the presolved model
- Easier to just do the simple linearization (PreQLinearize=1) yourself

```
def qinearize(model, use, zvars = None)
    *obj = model.getObjective()
    = = model.ModelSense
    model.setObjective(linpart)
Mmoli.setObj
    ork in range(qobj.Sizze():
    qcoef = qobj.getCoeff(k)
    xj =qobj.getVar2(\
    Mey1 =(xi., xj)
    if key1 in dupdict or key2 in dupdict:
    continue #this product already linearized; don't duplicate
    else:
    dupdict[key2] = 1 # proceed with linearization
    qcoeff =qobj.getCoeff(k)
    zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)
```



```
    lol
    skip2=False
    down =qcoeft'>0.0
        if down: \
        _ skip1 = True,
        else:
    if not skip1:
    cname = "lin1_"+ suffix
        M_(t)
    model.addConstr(zij - xj <= 0, name = cname)
    if not skip2: "
    madel addConstr(xi + xj-zil<=1, name= cam
    zvars!= None:
    zvars.append(zi)
```


A few loose ends

- Sometimes better to generate all 3 constraints associated with PreQLinearize=1 instead of the 1 or 2 that Gurobi generates
- Not needed for correctness, but can yield tighter relaxations
- Under investigation to try to get the tighter formulation without the additional constraint(s)

A few loose ends

- MILPs that are actually MINLPs in disguise
- We already saw this with neos-911970
- Soft knapsack constraints were a multinomial objective in disguise
- Don't necessarily want to reformulate the MILP into the MINLP
- But do want to consider both formulations, consider anything in the unused formulation that will help the other run faster (e.g. create the Padberg Graph)
- Other examples
- Overlap or interference conditions
- Logical conditions (e.g. SAT models)
- z variable models an and for the two binary x variables
- The open MIPLIB model neos-2629914-sudost
- Solve the MILP or MINLP, but use info from both to improve performance

Key Takeaways

- Non Default parameter settings can help
- PreQLinearize
- RLT, BQP and ZeroHalf cuts
- Don't forget the NodeMethod parameter to improve node LP solve times
- When tightening the formulation, need to consider the linearization variables
- Linearized model offers more opportunities to tighten than convexified model
- Albeit with potentially slower node throughput
- Gurobi's linearizations emphasize compact formulations
- Sometimes larger, basic linearization may work better
- Easy to implement (see Appendix)
- RLT type strategy: Multiply linear constraints by binary variable, linearize and combine constraints
- Padberg graph can yield insights
- Solve subMIPs including the linearization variables to determine bounds on the number of linearization variables that must be 1
- Look for reformulation opportunities
- Make sure quadratic conditions involving binaries are really quadratic.
- MINLP formulation in disguise can be used to tighten MILP formulation being used

References and Resources

1. Dispersion Problems (Kalvelagen):
http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximumdispersion.html
2. Products of binaries (Achterberg): https://www.gurobi.com/resource/products-of-variables-in-mixed-integer-programming/
3. More on the Padberg Graph and products of binaries (Klotz): http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf
4. Padberg's original Boolean Quadric Polytope Paper:
https://link.springer.com/article/10.1007/BF01589101
5. Reformulating IPs as QUBOs (Glover, Kochenberger, Du)
https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666
6. Other literature on linearizations of products of binaries:
https://www.hindawi.com/journals/jam/2020/5974820/

Thank You

Questions?

Appendix

- Some sample code using the Gurobi Python API to do the basic linearization

```
def qlinearize(model, useobj, zvars = None):
    qobj = model.getObjective()
    t = model.ModelSense
    linpart = qobj.getLinExpr()
    model.setObjective(linpart)
    dupdict = {}
    for k in range(qobj.size()):
        qcoef = qobj.getCoeff(k)
        xi = qobj.getVar1(k)
        xj = qobj.getVar2(k)
        key1 = (xi, xj)
        key2 = (xj, xi)
        if key1 in dupdict or key2 in dupdict:
            continue # this product already linearized; don't duplicate
        else:
            dupdict[key1] = 1 # first time this xi, xj pair encountered.
            dupdict[key2] = 1 # proceed with linearization.
        qcoeff = qobj.getCoeff(k)
        zname = "z_" + xi.VarName + "_" + xj.VarName
        zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)
```


Appendix

- Some sample code using the Gurobi Python API to do the basic linearization

```
suffix = xi.VarName + "_" + xj.VarName
skip1 = False
skip2 = False
if useobj:
    down = qcoef*t > 0.0
    if down:
        skip1 = True
    else: # qobj only contains nonzero Q elements
        skip2 = True
if not skip1:
    cname = "lin1_"+ suffix
    model.addConstr(zij - xi <= 0, name = cname)
    cname = "lin2_"+ suffix
    model.addConstr(zij - xj <= 0, name = cname)
if not skip2:
    cname = "lin3_"+ suffix
    model.addConstr(xi + xj - zij <= 1, name = cname)
if zvars != None:
    zvars.append(zij)
```

