Specialized Strategies for Products of Binary Variables

The World's Fastest Solver

Ed Klotz, Ph.D. (klotz@gurobi.com) February 2021 **Products of binaries**

• Problem formulation:

 $\min[c^T x] + x^T Q x \quad // \text{ no assumptions on convexity of } x^T Q x \\ [s.t. Ax \sim b] \\ x \in \{0,1\}$

- Possibly nonconvex MIQP
- Can reformulate constraints into objective using penalties (QUBO)
 - Good formulation for Quantum Annealers, not so good for solvers like Gurobi
 - <u>https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulating-and-using-q/17436666</u>

Outline

- Products of binaries fundamentals
- Solver options and parameters
- Working with the existing formulation
- Reformulations

- Solution strategies
 - Solve as convex or nonconvex MIQP
 - Still must deal with the quadratic objective
 - Starting with version 9.0, Gurobi can solve nonconvex MIQPs (and MIQCPs)
 - Transform into a convex MIQP or a MILP
 - Convexification of objective ($x_i^2 = x_i$ for binary variables)

•
$$x_i x_j = x_i x_j + (x_i^2 - x_i) + (x_j^2 - x_j) = (x_i^2 + x_i x_j + x_j^2) - x_i - x_j$$

o convex

•
$$x^T Q x = x^T Q x + x^T D x - d^T x = x^T (Q + D) x - d^T x$$

0 PSD

- PreQLinearize = 0: Convexification of objective ($x_i^2 = x_i$ for binary variables)
- A nonconvex MIQP becomes a convex one without adding constraints
 - But there is no free lunch

•
$$x_i x_j = x_i x_j + (x_i^2 - x_i) + (x_j^2 - x_j) = (x_i^2 + x_i x_j + x_j^2) - x_i - x_j$$

0 0 convex relaxation

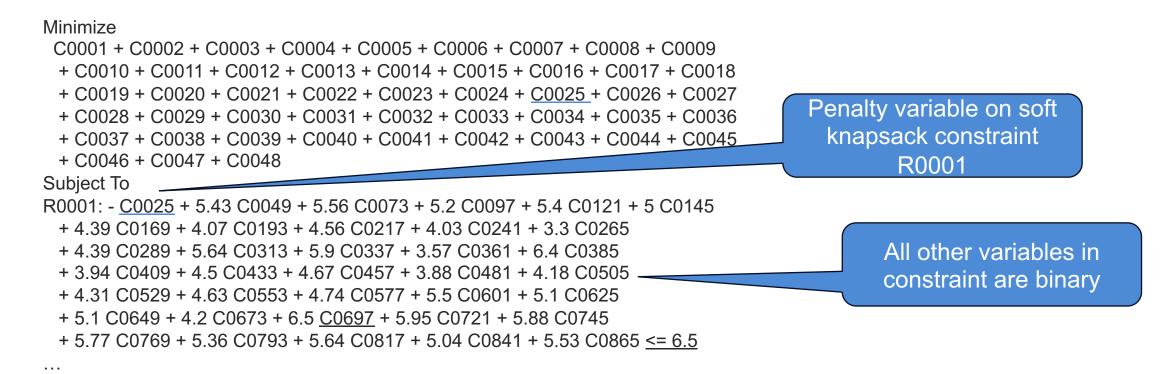
• Consider
$$x_i = x_j = .5$$
 in

 $\min x_i x_j \ s.t$ $x_i + x_j = 1$ $x_i, x_j \ge 0$

- Objective value in relaxation is -.25
- Potential for negative dual bound values for convexified model that has an obvious lower bound of 0 in the original model
- As magnitude of D increases, so does the weakness in the dual bound of the convexified problem

- Solution strategies
 - Linearize a convex or nonconvex MIQP into a MILP
 - Simplest linearization technique: do the following for each product of binaries in the model (PreQLinearize=1)
 - $Z_{ij} = x_i x_j$ $Z_{ij} \le x_i$ $Z_{ij} \le x_j$ (only need these two if objective pushes z_{ij} up)
 - $z_{ij} \ge x_i + x_j 1$ (only need this one if objective pushes z_{ij} down)
 - Add the 3 linear constraints to the model
 - Replace each occurrence of $x_i x_j$ in the model with z_{ij}
 - We've transformed a (possibly nonconvex MIQP) into a MILP
 - Benefit from various Gurobi features available for MILP but not MIQP
 - Still no free lunch
 - We added 1-3 constraints for each product of binaries.

- Solution strategies
 - Linearize a convex or nonconvex MIQP into a MILP
 - A less straightforward but more compact linearization technique
 - Consider the MIPLIB 2010 model neos-911970



- A less straightforward but more compact linearization technique
 - Look at a simpler version of this soft knapsack constraint

Minimize

 $\begin{array}{l} C0001 + C0002 + C0003 + C0004 + C0005 + C0006 + C0007 + C0008 + C0009 \\ + C0010 + C0011 + C0012 + C0013 + C0014 + C0015 + C0016 + C0017 + C0018 \\ + C0019 + C0020 + C0021 + C0022 + C0023 + C0024 + C0025 + C0026 + C0027 \\ + C0028 + C0029 + C0030 + C0031 + C0032 + C0033 + C0034 + C0035 + C0036 \\ + C0037 + C0038 + C0039 + C0040 + C0041 + C0042 + C0043 + C0044 + C0045 \\ + C0046 + C0047 + C0048 \end{array}$

Subject To

R0001a: - <u>C0025</u> + 4.2 C0673 + 6.5 <u>C0697</u> + 5.95 C0721 <= 6.5

C0673 = C0697 = 1 --> C0025 = 4.2 + 6.5 - 6.5 = 4.2 C0673 = C0721 = 1 --> C0025 = 4.2 + 5.95 - 6.5 = 3.65 C0697 = C0721 = 1 --> C0025 = 6.5 + 5.95 - 6.5 = 5.95 C0673 = C0697 = C0721 = 1 -> C0025 = 4.2 + 5.95 = 10.15 Knapsack capacity matches largest knapsack weight

R0001a provides a linear representation of C0025 = 4.2 C0673*C0697 + 3.65 C0673*C0721 + 5.95 C0697*C0721 - 3.65 C0697*C0673*C0721

- A less straightforward but more compact linearization technique
 - Implications for the full constraint R0001

 $\begin{array}{l} \mathsf{R0001:} - \underline{\mathsf{C0025}} + 5.43\ \mathsf{C0049} + 5.56\ \mathsf{C0073} + 5.2\ \mathsf{C0097} + 5.4\ \mathsf{C0121} + 5\ \mathsf{C0145} \\ + 4.39\ \mathsf{C0169} + 4.07\ \mathsf{C0193} + 4.56\ \mathsf{C0217} + 4.03\ \mathsf{C0241} + 3.3\ \mathsf{C0265} \\ + 4.39\ \mathsf{C0289} + 5.64\ \mathsf{C0313} + 5.9\ \mathsf{C0337} + 3.57\ \mathsf{C0361} + 6.4\ \mathsf{C0385} \\ + 3.94\ \mathsf{C0409} + 4.5\ \mathsf{C0433} + 4.67\ \mathsf{C0457} + 3.88\ \mathsf{C0481} + 4.18\ \mathsf{C0505} \\ + 4.31\ \mathsf{C0529} + 4.63\ \mathsf{C0553} + 4.74\ \mathsf{C0577} + 5.5\ \mathsf{C0601} + 5.1\ \mathsf{C0625} \\ + 5.1\ \mathsf{C0649} + 4.2\ \mathsf{C0673} + 6.5\ \underline{\mathsf{C0697}} + 5.95\ \mathsf{C0721} + 5.88\ \mathsf{C0745} \\ + 5.77\ \mathsf{C0769} + 5.36\ \mathsf{C0793} + 5.64\ \mathsf{C0817} + 5.04\ \mathsf{C0841} + 5.53\ \mathsf{C0865} \leq = 6.5 \end{array}$

C00025 = (linear combinations of all the bilinear terms) – (linear combinations of larger multilinear terms)

- Could represent this complicated multilinear expression via a single constraint
- Suspect the creator of this model was just thinking about soft knapsack constraints (no info on MIPLIB set regarding model origins).
- Can we modify this to help us linearize an expression just involving bilinear terms?

• A less straightforward but more compact linearization technique

• Consider a different version of this constraint: R0001': - C0025 + 5.43 C0049 + 5.56 C0073 + 5.2 C0097 + 5.4 C0121 + 5 C0145 + 4.39 C0169 + 4.07 C0193 + 4.56 C0217 + 4.03 C0241 + 3.3 C0265 + 4.39 C0289 + 5.64 C0313 + 5.9 C0337 + 3.57 C0361 + 6.4 C0385 + 3.94 C0409 + 4.5 C0433 + 4.67 C0457 + 3.88 C0481 + 4.18 C0505 + 4.31 C0529 + 4.63 C0553 + 4.74 C0577 + 5.5 C0601 + 5.1 C0625 + 5.1 C0649 + 4.2 C0673 + <u>166.76 C0697</u> + 5.95 C0721 + 5.88 C0745 + 5.77 C0769 + 5.36 C0793 + 5.64 C0817 + 5.04 C0841 + 5.53 C0865 <= <u>166.76</u>

166.76 = sum of all knapsack weights except for C0697

- All sums of knapsack weights other than C0697 will be <= the rhs
 - \rightarrow all multilinear expressions not involving C0697 contribute 0 violation to this soft constraint
- If C0697 = 1 and any other binary variable = 1 we get a contribution of the other binary variable's coefficient to the violation (e.g C0049 = 1 contributes 5.43 of violation).
- C0025= 5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534 C0865*C0697
 - C0025 represents precisely a quadratic expression involving C0697 and other binaries

- A less straightforward but more compact linearization technique
 - C0025= 5.43 C0049*C0697 + 5.56 C0073*C0697 + ... + 5.534 C0865*C0697
 - C0025 represents precisely a quadratic expression involving C0697 and other binaries
 - Gurobi's PreQLinearize = 2 setting uses this to do a more compact linearization

•
$$q_1y * x_1 + \dots + q_ny * x_n (y, x_j \text{ binary})$$
 is linearized as
 $q_1x_1 + \dots + q_nx_n + qy - p \le q$ $(q = \sum_{j=1}^n q_j)$ // $q_j > 0$.
 $p = q_1y * x_1 + \dots + q_ny * x_n$

- Summary of Gurobi PreQLinearize settings: Still No Free Lunch
 - PreQLinearize = 0: Convexify the nonconvex quadratic objective
 - Move from nonconvex MIQP to convex MIQP
 - No additional constraints
 - Miss out on MILP features absent from convex MIQP solver
 - Counterintuitive dual bound values that suggest possibly weak relaxations
 - PreQLinearize = 1: Linearize the nonconvex quadratic objective with new variable and constraints for each bilinear objective term
 - Move from nonconvex MIQP to MILP $\stackrel{\downarrow}{\leftarrow}$
 - Fairly strong MILP formulation
 - Each bilinear term in the quadratic objective introduces one new variable and one or two additional linear constraints
 - PreQLinearize = 2: Linearize using the soft knapsack constraints
 - Move from nonconvex MIQP to MILP
 - Multiple bilinear terms modelled with one additional variable and constraint
 - Weaker MILP formulation

- Gurobi PreQLinearize settings
 - Gurobi's default logic to choose works fairly well.
 - Use node log to determine the default selection
 - Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: 0xe647a136 Model has 1225 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary) Coefficient statistics:

Matrix range [1e+00, 1e+00] Objective range [0e+00, 0e+00]

QObjective range [2e-01, 2e+01] Bounds range [1e+00, 1e+00]

RHS range [1e+00, 1e+00]

Found heuristic solution: objective 246.2637697 Presolve time: 0.00s

Presolved: 1 rows, 50 columns, 50 nonzeros

Presolved model has 1275 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary)

Default setting; convexification (PreQLinearize = 0) selected. No additional constraints; number of quadratic terms has increased due to convexification (one new nonzero the 0 diagonal term associated the square of each of the 50 variables)

- Gurobi PreQLinearize settings
 - Gurobi's default logic to choose works fairly well.
 - Use node log to determine the default selection
 - Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: 0xe647a136

Model has 1225 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary) Coefficient statistics:

Matrix range [1e+00, 1e+00] Objective range [0e+00, 0e+00] QObjective range [2e-01, 2e+01] Bounds range [1e+00, 1e+00]

RHS range [1e+01, 1e+01]

Found heuristic solution: objective 246.2637697

Presolve time: 0.00s

Presolved: 1226 rows, 1275 columns, 3725 nonzeros Variable types: 0 continuous, 1275 integer (1275 binary)

Set PreQLinearize = 1 (simple linearization). One additional constraint and variable for each bilinear term; no quadratic objective terms in presolved model.

- Gurobi PreQLinearize settings
 - Gurobi's default logic to choose works fairly well.
 - Use node log to determine the default selection
 - Compare original model with presolved model

Optimize a model with 1 rows, 50 columns and 50 nonzeros

Model fingerprint: 0xe647a136

Model has 1225 quadratic objective terms

Variable types: 0 continuous, 50 integer (50 binary) Coefficient statistics:

Matrix range [1e+00, 1e+00] Objective range [0e+00, 0e+00] QObjective range [2e-01, 2e+01] Bounds range [1e+00, 1e+00] RHS range [1e+01, 1e+01] Found heuristic solution: objective 246.262

Presolve time: 0.00s

Presolved: 50 rows, 99 columns, 1373 nonzeros

Variable types: 48 continuous, 51 integer (51 binary)

Set PreQLinearize = 2 (compact linearization). One additional constraint (49 total) for all bilinear terms involving a single variable; 49 additional penalty variables no quadratic objective terms in presolved model.

An Interesting Example

- The p-Dispersion-Sum problem
 - Given a set of n points with distances dij between points i and j, find the subset of k points that maximizes the sum of the distances

$$Max \sum_{i < j} d_{ij} x_i x_j$$

s.t.
$$\sum_{j=1}^n x_j = k$$
$$x_j \in \{0, 1\}$$

- Example discussed in Practical Guidelines for Solving Difficult MILPs (https://www.sciencedirect.com/science/article/abs/pii/S1876735413000020
- Broader discussion in <u>http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximu</u> <u>m-dispersion.html</u>
- We'll come back to this later.

Solver options and parameters

- Solve directly as (non)convex MIQP
 - Via Spatial Branch and Bound if using Gurobi
 - Set NonConvex parameter to 2
 - Not the best choice on the models considered in this presentation.
- Transform into a MILP or convex MIQP
 - Choose between convexification and linearization (PreQlinearize parameter)
 - Convexification
 - More compact formulation, but weaker
 - Linearization
 - Larger, stronger formulation
 - More opportunities to provide polyhedral cuts, use other MILP features
 - Can increase intensity of RLT and BQP cuts
 - For general bilinear terms, but particularly effective on products of binaries
 - More later
 - Zero-Half cuts when PreQLinearize = 1
 - Good in general on constraints with all binaries, +-1, +-2 coefficients

Results for the p-Dispersion-Sum problem, n=50, k=10 GUROBI

- $Max \sum_{i < j} d_{ij} x_i x_j$ s.t. $\sum_{i=1}^n x_i = k$
 - $x_j \in \{\mathbf{0}, \mathbf{1}\}$
- Gurobi 9.1, 2 Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz quad core processors
- Defaults: Out of memory with gap of 52.3% after 1.35 hours
 Gurobi by default chose to convexify rather than linearize
- PreQLinearize = 1: Optimal, 3.62 hours
- PreQLinearize = 2, RLTCuts = 2: Optimal, 1.55 hours
- Can we do better by tightening the formulation?

- LP relaxation feasible region is the convex hull of the integer feasible points
 - Won't be able to use LP-based polyhedral cuts on this direct formulation
 - Previous results indicate just linearizing (PreQLinearizing=1) is better, but still not particularly
 effective given the problem size
- <u>http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html</u> describes multiple ways to derive a single cut that uses both original x binary variables and the linearization variables z

$$Max \sum_{i < j} d_{ij} x_i x_j$$

s.t.
$$\sum_{j=1}^n x_j = k$$
$$x_i \in \{0, 1\}$$

$$Max \sum_{i < j} d_{ij} z_{ij}$$

s.t. $\sum_{j=1}^{n} x_j = k$

 $\sum_{i < j} z_{ij} = k * (k - 1)/2$
 $x_i \in \{0, 1\}$

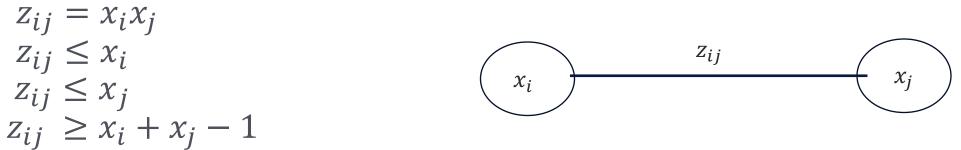
- Run time with cut drops from hours to < a minute
- Blog describes multiple ways to derive this cut, but how do we do it generically in a way that extends to other models?

•
$$Max \sum_{i < j} d_{ij} x_i x_j$$

 $s.t. \sum_{j=1}^n x_j = k$
 $x_j \in \{0, 1\}$
• Generic approach #1: RLT and aggregate (from the blog):
 $x_i * (\sum_{j=1}^n x_j) = k * x_i$
 $x_i * (\sum_{j=1}^n x_j) = k * x_i$
 $x_i * (\sum_{j=1}^n x_j) = k * x_i$
 $x_i * (\sum_{j=1}^n x_j) = k * x_i$
(add all n such constraints:
 $\sum_{i=1}^n (\sum_{j < i} z_{ij} + \sum_{j > i} z_{ij}) = (k-1) * x_i$
 $\sum_{j \neq i} z_{ij} = (k-1) * k$
 $\sum_{i < j < i} z_{ij} = k * (k-1)/2$
 $\sum_{i < j < i} z_{ij} = k * (k-1)/2$

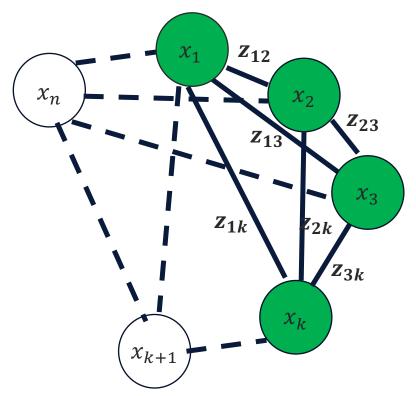
 RLT approach of last slide A bit complex, but generic and effective $Max \sum_{i < j} d_{ij} z_{ij}$ s.t. $\sum_{j=1}^{n} x_j = k$ <linearization constraints> $\sum_{i < j} z_{ij} = k * (k - 1)/2$ $x_j \in \{0, 1\}$

- Generic approach #2: just use the "Padberg Graph"
 - Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives



• Either way, we are determining the number of z variables that must be 1

• Padberg graph for our dispersion problem Complete graph since $d_{ij} > 0$



 $Max \sum_{i < j} d_{ij} z_{ij}$ s.t. $\sum_{j=1}^{n} x_j = k$

linearization constraints>

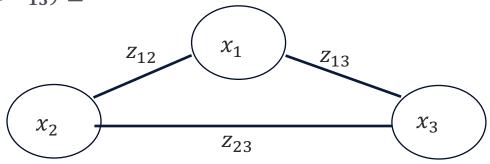
 $\sum_{i < j} z_{ij} = k * (k-1)/2$

 $x_j \in \{0, 1\}$

- Given that k of the x variables must be 1, how many of the z variables must be 1?
 - WLOG, set the first k x variables to 1
 - Induces a complete subgraph on the green nodes associated with x₁,..., x_k
 - Each edge in the subgraph identifies a z variable that must be 1
 - There are k * (k 1)/2 such edges

Source: http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf

- Padberg, The Boolean Quadric Polytope: Some Characteristics, Facets and Relatives
 - He used the Padberg graph in a generic manner that just used the quadratic objective
 - Generate cuts even when the problem has no constraints
 - Example: $x_1 + x_2 + x_3 (z_{12} + z_{23} + z_{13}) \le 1$
 - Can prove by contradiction
 - Or by induction
 - Extends to cliques of larger size
 - Or by deriving as a zero half cut
 - But Padberg figured it out first
 - Or via facet defining inequalities
 - Gurobi's BQP cut feature makes use of this with cliques of size 3
 - Traction for cut generation when model has few or no constraints
 - Adding these Padberg Cuts for cliques of size 4 or more may be useful
 - For 9.1.x with x >= 1, can set GURO_PAR_MOREBQPCUTS to 1
 - For next major release and beyond, more refined improvements will be integrated with no need for setting a hidden parameter.



• $Max \sum_{i < j} d_{ij} x_i x_j$ s.t. $\sum_{j=1}^n x_j = k$ $x_j \in \{0, 1\}$ $Max \sum_{i < j} d_{ij} z_{ij}$ s.t. $\sum_{j=1}^{n} x_j = k$ <linearization constraints> $\sum_{i < j} z_{ij} = k * (k - 1)/2$

 $x_j \in \{0, 1\}$

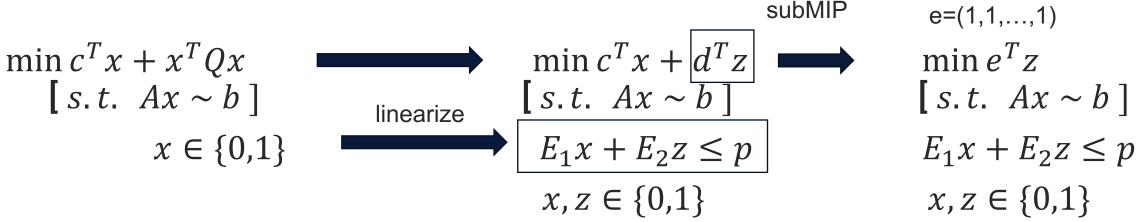
- Best time on original model: 1.55 hours (PreQLinearize=2, RLTCuts=2)
- Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 18 seconds
- Do the 3 constraint linearization described in this presentation: 8 seconds
- Add the cardinality cut to 3 constraint linearization model: 5 seconds

- Does the success tightening the n=50, k=10 p-dispersion-sum model carry over to other models?
- Consider the publicly available QPLIB models on which Gurobi exceeds or comes close to the one hour time limit on the Mittelmann benchmark.
- Model 3772
 - Convexify objective (PreQLinearize=0): 11.5% gap after 2 hours
 - Linearize objective (PreQLinearize=1, Gurobi's default choice): Optimal, 27.88 minutes
 - Best non default settings: ZeroHalfCuts=2, RLTCuts=2: Optimal, 14.22 minutes
 - No success so far tightening the formulation
 - All original binaries can get set to 0
 - All linearization variables can be set to 0
 - No cardinality type cut like in the p-dispersion sum model is available

- More QPLIB models
- Model 3775
 - Convexify objective (PreQLinearize=0, Gurobi's default choice): 27.32 minutes
 - Linearize objective (PreQLinearize=1) 30.73 minutes
 - Best non default settings found: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
 - Tightening the existing formulation
 - No explicit cardinality constraints on the original variables like in the p-dispersion-sum problem
 - Q matrix is not dense like in the p-dispersion-sum problem
 - But we can ask a similar question: what is the minimum number of linearization binaries that must be set to 1 in a feasible solution for the linearized MIQP?
 - Formulate and solve the appropriate subMIP

How many z variables must be 1?

- Model 3775 (continued)
 - SubMIP solve for case where $Q_{ij} \ge 0$:



- Cardinality cut: $e^T z \ge z^*$
- Best time on original model: 22.67 minutes (PreQLinearize=1, RLTCuts=2)
- Add cardinality cut to Gurobi presolved model with PreQLinearize=1: 15.40 minutes*
- Do the 3 constraint linearization described in this presentation: 49.18 minutes
- Add the cardinality cut to 3 constraint linearization model: 8.95 minutes*
- *: Includes 32 sec. for subMIP solve

- More QPLIB models
- Model 3587
 - Convexify objective (PreQLinearize=0): Hopeless
 - Linearize objective (PreQLinearize=1, Gurobi's default choice) : 62.63 minutes
 - Best non default settings found: 49.55 minutes (RLTCuts = ZeroHalfCuts = 2)
 - subMIP yields a useful cardinality cut
 - Gurobi linearized model: 15.37 minutes
 - 3 constraint linearized model 12.58 minutes
 - Includes 0.5 sec. for sub MIP solve
 - Similar results giving 3 constraint linearized model to Gurobi without the cut
- Model 3614
 - Appears to be a different instance of the same model as 3587
 - Over 3x speedup adding cardinality cut to 3 constraint linearized model compared to defaults (subMIP solve time only 0.02 sec.)

- QPLIB models summary
 - Discarded model 0752 due to high performance variability

Model name	Defaults (minutes)	Best non default	Cardinality Cut
3772	27.88	14.22	
3775	27.32	22.67	8.95
3587	62.63	49.55	12.58
3614	11.65	9.83	3.07

- Found non default settings to improve performance on all 4 models
- Cardinality cut offered the best performance on the 3 of 4 models
 - And all 3 on which it could be created.

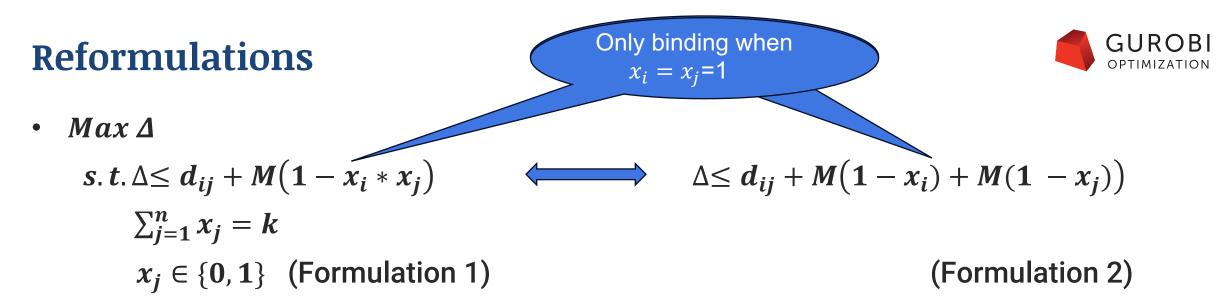
- Other results with sub MIP cuts
- Quadratic Assignment Problems (QAPs) from the QAPLIB set
 - Known to be difficult for MIP solvers
 - Sub MIP solves quickly
 - Big speedups on had, nug QAPs of dimension 12
 - Solved had, nug QAPs of dimension 14 and 16 that regular Gurobi cannot solve with defaults or parameter tuning
 - Doesn't scale up to larger QAPs
 - Sub MIP cuts require basic linearization
 - Number of bilinear terms grows quadratically as dimension increases
 - Node throughput slows dramatically as problem size increases
- Proprietary models from a prospect
 - SubMIP solves remained far from optimality after over an hour
 - Extended BQP cuts in 9.1.x and beyond were very effective

Reformulations

- Back to the p-Dispersion-Sum problem
- Cardinality based cut enabled Gurobi to solve the n=50, k=10 instance within 30 seconds
- But how well does it scale?
- An instance with n=100, k= 20 and the cardinality cut did not solve to optimality in several hours, despite better gap
- Instead of maximizing the sum of distances, maximize the minimum distance among the k chosen points (and k*(k-1)/2 associated distances):

Max Δ

s. t.
$$\Delta \le d_{ij} + M(1 - x_i * x_j)$$
 // $M = \max d_{ij}$ Only binding when $x_i = x_j = 1$
 $\sum_{j=1}^{n} x_j = k$ $x_j \in \{0, 1\}$ (source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html)



- Formulation 1 (n=100, k=20)
 - Defaults (PreQLinearize=1): 16 seconds
 - PreQLinearize=0: Timed out after 3 hours (solving nonconvex MIQCP)
- Formulation 2 (n=100, k=20)
 - Defaults: 2 seconds

(source: http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-dispersion.html)

A few loose ends

- The subMIP and cardinality cut approaches required direct access to the linearization variables
 - Can generate and work on the presolved model
 - Easier to just do the simple linearization (PreQLinearize=1) yourself

def glinearize(model, useobj, zvars = None): qobj = model.getObjective() t = model.ModelSense linpart = qobj.getLinExpr() model.setObjective(linpart) dupdict = $\{\}$ for k in range(qobj.size()) qcoef = qobj.getCoeff(k) xi = qobj.getVar1(k) xj = qobj.getVar2(k) key1 = (xi, xj)key2 = (xj, xi)if key1 in dupdict or key2 in dupdict: continue # this product already linearized; don't duplicate else dupdict[key1] = 1 # first time this xi, xj pair encountered. dupdict[key2] = 1 # proceed with linearization qcoeff = qobj.getCoeff(k) zname = "z " + xi.VarName + " " + xj.VarName zij = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname) suffix = xi.VarName + "_" + xj.VarName skip1 = False skip2 = False if useobj: down = gcoef*t > 0.0 if down: skip1 = True else: # gobj only contains nonzero Q elements skip2 = True if not skip1: cname = "lin1 "+ suffix model.addConstr(zij - xi <= 0, name = cname) cname = "lin2 "+ suffix model.addConstr(zij - xj <= 0, name = cname) if not skip2: cname = "lin3 "+ suffix model.addConstr(xi + xj - zij <= 1, name = cname) if zvars != None: zvars.append(zij)

(appendix of this deck contains this code in a size that can actually be read)

A few loose ends

- Sometimes better to generate all 3 constraints associated with PreQLinearize=1 instead of the 1 or 2 that Gurobi generates
 - Not needed for correctness, but can yield tighter relaxations
 - Under investigation to try to get the tighter formulation without the additional constraint(s)

A few loose ends

- MILPs that are actually MINLPs in disguise
 - We already saw this with neos-911970
 - Soft knapsack constraints were a multinomial objective in disguise
 - Don't necessarily want to reformulate the MILP into the MINLP
 - But do want to consider both formulations, consider anything in the unused formulation that will help the other run faster (e.g. create the Padberg Graph)
 - Other examples
 - Overlap or interference conditions
 - Logical conditions (e.g. SAT models)
 - z variable models an and for the two binary x variables
 - The open MIPLIB model neos-2629914-sudost
 - Solve the MILP or MINLP, but use info from both to improve performance

$z_{ij} = x_i x_j$
$z_{ij} \leq x_i$
$z_{ij} \leq x_j$
$z_{ij} \geq x_i + x_j - 1$

Key Takeaways

- Non Default parameter settings can help
 - PreQLinearize
 - RLT, BQP and ZeroHalf cuts
 - Don't forget the NodeMethod parameter to improve node LP solve times
- When tightening the formulation, need to consider the linearization variables
 - Linearized model offers more opportunities to tighten than convexified model
 - Albeit with potentially slower node throughput
 - Gurobi's linearizations emphasize compact formulations
 - Sometimes larger, basic linearization may work better
 - Easy to implement (see Appendix)
 - RLT type strategy: Multiply linear constraints by binary variable, linearize and combine constraints
 - Padberg graph can yield insights
 - Solve subMIPs including the linearization variables to determine bounds on the number of linearization variables that must be 1

Look for reformulation opportunities

- Make sure quadratic conditions involving binaries are really quadratic.
- MINLP formulation in disguise can be used to tighten MILP formulation being used

References and Resources

- 1. Dispersion Problems (Kalvelagen): <u>http://yetanothermathprogrammingconsultant.blogspot.com/2019/06/maximum-</u> <u>dispersion.html</u>
- 2. Products of binaries (Achterberg): <u>https://www.gurobi.com/resource/products-of-variables-in-mixed-integer-programming/</u>
- 3. More on the Padberg Graph and products of binaries (Klotz): <u>http://orwe-conference.mines.edu/files/IOS2018SpatialPerfTuning.pdf</u>
- 4. Padberg's original Boolean Quadric Polytope Paper: https://link.springer.com/article/10.1007/BF01589101
- 5. Reformulating IPs as QUBOs (Glover, Kochenberger, Du)

https://www.springerprofessional.de/en/quantum-bridge-analytics-i-a-tutorial-on-formulatingand-using-q/17436666

6. Other literature on linearizations of products of binaries: https://www.hindawi.com/journals/jam/2020/5974820/

Specialized Strategies for Products of Binary Variables

Thank You

Questions?

Copyright © 2021, Gurobi Optimization, LLC, Confidential

Appendix

• Some sample code using the Gurobi Python API to do the basic linearization

```
def glinearize(model, useobj, zvars = None):
  qobj = model.getObjective()
       = model ModelSense
  linpart = qobj.getLinExpr()
  model.setObjective(linpart)
  dupdict = \{\}
  for k in range(qobj.size()):
    qcoef = qobj.getCoeff(k)
    xi
          = gobj.getVar1(k)
          = qobj.getVar2(k)
    xi
    key1 = (xi, xj)
    key2 = (xj, xi)
    if key1 in dupdict or key2 in dupdict:
       continue
                    # this product already linearized; don't duplicate
    else:
       dupdict[key1] = 1 # first time this xi, xi pair encountered.
       dupdict[key2] = 1 # proceed with linearization.
    qcoeff = qobj.getCoeff(k)
    zname = "z " + xi.VarName + " " + xj.VarName
          = model.addVar(obj=qcoeff, vtype=GRB.BINARY, name = zname)
    zii
```

Appendix

• Some sample code using the Gurobi Python API to do the basic linearization

```
suffix = xi.VarName + "_" + xj.VarName
skip1 = False
skip2 = False
if useobj:
  down = qcoef^{t} > 0.0
  if down:
     skip1 = True
                # qobj only contains nonzero Q elements
  else:
    skip2 = True
if not skip1:
  cname = "lin1 "+ suffix
  model.addConstr(zij - xi <= 0, name = cname)
  cname = "lin2_"+ suffix
  model.addConstr(zij - xj <= 0, name = cname)
if not skip2:
  cname = "lin3 "+ suffix
  model.addConstr(xi + xj - zij <= 1, name = cname)
if zvars != None:
  zvars.append(zij)
```