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Outline For This Talk

Motivation, and: what is electrical power?
What is ACOPF?

How is ACOPF used in practice?

Optimization details!!!

Gurobi and ACOPF.

Questions welcome. During and after the talk.
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My View: Practical Optimization at a Crossroads

Current and past areas of interest: logistics, transportation, supply chain.
These areas will remain relevant, but ...

The future: heavy engineering and hard science.

Very nonlinear, complex models that embody hard, inflexible rules.

Very large scale, high level of modeling detail, myriad details in complex
systems.

Demanding performance requirements: must get good solutions fast.

Are our algorithms up to the task?



Renewables

Grids are being
updated regardless
of renewables

Power grids are changing Smart loads

Demand response

POWER GRIDS

Local generation
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EASTERN
INTERCONNECTION

North American
Transmission Map

» Three separate electrical circuits

« Except for Texas, too large to control as one
unit

WESTERN

INTERCONNECTION /

ELECTRICITY RELIABILITY
COUNCIL OF TEXAS
INTERCONNECTION
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ISOs: Independent System Operators 2

RTOs: Regional Transmission
Operators

* Each ISO/RTO controls the grid in its
territory

» Power can travel between neighboring

entities, but in a constrained manner

« Each entity operates the markets (energy,
capacity, and reserves) in its territory

-, Q,L\J‘
\ Electric 85“58.8‘) Operator
d
[ 4
TOSNE)
PJM
Southwest }
Power Pool
(SPP) _—_—
/ 5
|
- | REGIONAL
Reliab L TRANSMISSION
0 : = ORGANIZATIONS

THIS MAP WAS CREATED USING
Engroy VeLocry, Novemeer 2015
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NY system:
« 1814 buses
» 500+ generators

This is not a large system
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« What is energy?

« What is power?

« What is electrical current?
« What is voltage?

TerminOlOgY * Alternating current, voltage, power?

 Basic science goes back hundreds of years: Gauss,
Coulomb, Faraday, Ampere, Lorentz, Maxwell

« Modern engineering details are no less complex!
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conductor

Generator produces

mqg/netic AC current at a given AC voltage
steam field Both at the given frequency (60 Hz or 50 Hz)
Sa
/l .
energy
source 0 Current x Voltage = Power
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Standard ACOPF

We are given a power system, i.e., a network of

e Generators
e Power lines and transformers
e Buses (nodes)

e Each bus has a load, i.e., numerical demand for power generators, lines,
transformers and buses (nodes) with power demands

|

Objective: meet demands at minimum cost

|

Cost incurred at generators

|

Note: power flows following laws of physics




A formal textbook statement of standard ACOPF
Minimize cost of generation: }_ g Fg(P9)

e Here, G is the set of generators
e P9 is the (active) power generated at g

o F, is generation cost at g — convex, piecewise-linear or quadratic

Example: F,(P) = 3P? + 2P

Constraints:

e PF (power flow) constraints: choose voltages so that network delivers
power from generators to the loads, following AC power flow laws

e Voltage magnitudes are constrained

e Power flow on any line km cannot be too large

e The output of any generator is limited
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kw

complex power injected into km at k

QZM"’_; 6))c - 9""’

Skm —
(Grk — 3Brk) |Vi|? + (Grm — 7Bim) | V|| Vin|(cos Ok + 7 sin Og,y,)

complex power injected into km at k

OR,



G—»Skm S <—®

mk

Gkk ) B“'— Gh.m +J E“""

L. L =Y, S,

G ) gm., ("MM +) S km
I Ohm’s Law

Admittance matrix for line km Complex current

N - ¥
Ve
Skm = Vk LV (Vn>

Vk:lvklffg" Oz 6=V, = lVnle

km— "

Skm -
(Gkk - ]Bkk) |‘/Ic|2 + (ka - jBkm) |Vk| |Vm|(COS Hkm + .7 sin Okm)




§ (k)

“Reactive” power generation/demand at k

||

> kmesr) Sem = Ciegy Pi — PY) + 1(XCiegy Q7 — Q)

/

LHS = complex power injected into grid at k

Real power demand at k

Total real (“active”) power generated at k
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‘ Basic ACOPF

Minimize )., Fi( P;)

with constraints:

Y branch km: Sk, =
(Grk — 7Bik) |Vi|? + (Gkm — 7Bim) | V|| Vin| (cos Ok, + 7 sin Oy,)

kaed Skm = (Zzeg( k) P Pk) + J(Zzeg Qg QZ)

Power flow limit on branch km:
|Skm|2 - Re( ‘S’km)2 + Im( Skm)2 < Ukm

Voltage limit on bus &:
Vkmin S |‘/k | S V.

Generator output limits:
f)imin < Pz'g < })imax
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But there is an equivalent formulation as a V, - v, fﬁJ O

QCQP

(Quadratically Constrained Quadratic Program) m

9

kem—

Skm —
(G — 3Brk) |Vi|? + (Gim — 7Bim) | V|| Vin| (cos Ok, + 7 sin Oy,

) "

Vk Gk +.) Bkk. ka "’J Bku
Skm == Vk >/ (Vm> Y "
L - \(f“k +J g"‘l. G-MM ‘)'\)EMV\

Admittance matrix for line km

L < Use rectangular coordinates for voltages



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 3, AUGUST 2001

389

Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy

P, Genl ) Gen2 P,
- jl.1 -~

jl2  j1.5, v=1.05Z0,

Gen3
V=1.0520

Fig. 6. Three bus system.

Gen2 MW (pu)

2

A knowledge of the solution boundary of the power flow problem is important for determining the
robustness of operating points, and for evaluating strategies for improving robustness. A method of
exploring that solution boundary has been developed.

Examples have demonstrated some of the possible forms that the solution boundary can exhibit. It
appears that quite complicated behavior is possible. This could have a significant influence on the
formulation of algorithms for optimally improving system robustness. It remains to fully explore

these issues.



Minimize ), ; Fi( P})

with constraints:

Y branch km: Sk, =
(Grk — 3Brk) |Vi|? + (Grm — 7Bim) | V|| Vin|(cos O + 7 sin Oy,

D kmesr) Skm = (Dicgr) P} — P{) + + 1o Q! - Q})

Power flow limit on branch km:
|Skm|? = Re( Skm)? + Im( Skm)? < Uim

Voltage limit on bus k:
Vkmin S |‘/k | S V

Generator output limits:
Pz_minSIJigSPz_max ‘ GUROBI
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A common simplification: the DC approximation

Y branch km: Sk, =
(Grk — JBikk) |Vi|? + (Grm — 7Bim) | Vi||Vin|(cos Ogm + 7 sin Oyy,)

e |[Vi| = 1 for all buses k. Why?
e cos 0y,, = 1 and sinOg,,, = 0, — 0,,, for all branches km.

e [gnore reactive power.
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DC approximation

Minimize ) ;. Fi( P)

with constraints:

V branch km:  Pry = Yem( Ok — Om)

kaed Pkm — (Zzeg( k) PQ Plg)

Power flow limit on branch km:
IP kml S Ukm

Generator output limit on bus &:
Ppin < P < PP

&
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Unit commitment (network aware, 1 period)

Minimize ) ;o (Fi( PY) + hiz)
with constraints:

V branch km: Py = Ykm( Ok — Om)

kaea(k) P = (Zz’eg(k) Pz'g — B Ig )

Power flow limit on branch km: | Pern| < Ugm

Generator output limits:  z; P™® < PY < z; P> z; € {0,1}.

e

Multi-period model has ramping constraints, plus more



Network operations

» Once a day: day-ahead markets
Plans hourly operations for the next day, based on demand estimates and generator bids.
Multi-period unit-commitment problem.
Typically “security constrained”. Also known as SCUC (security-constrained unit commitment)
After solving, fix binaries, rerun as LP. Duals used as market prices.

« As the day progresses, more restricted/accurate versions of SCUC are run so as to correct

« Near real-time (5 minutes), DC OPF, also known as RT-dispatch. Duals used as spot prices.

What else:

« Real-time balancing provided by “reserves” setup. Paid through a different market. Planning
also uses LP.

« Long-term planning using “capacity markets”. Also LP/MIP.

« Today, AC models are only used for studies or to “make sure” that e.g. RT-dispatch is safe.



How do we "solve" ACOPF ?

« Atale of two worlds:
» (Good solutions only or lower bounds, also?

* How about extensions to mixed-integer variants?



Good solutions: interior point methods

A must-have tool! (oday)

Knitro, IPOPT. LOQO?

Knitro and IPOPT are excellent.

Even casual implementations obtain good results. No other algorithmic approach comes close.
Also, very elegant theory!

Theory only guarantees convergence to (?) a critical point for the barrier function.

On standard ACOPF near-optimal solutions are routinely obtained, even on large cases.

Polar formulation (not QCQP) is by far better.

A (minor?) issue: solutions can exhibit small infeasibilities.



N o e
118 118 186 54 0.76

1354pegase
ACTIVSg2000
3120sp

9241pegase

ACTIVSg70k

Sample runtimes

1354 1991 260 1.95

2000 3206 544 2.96

3120 3693 505 4.25

9241 16049 1445 11.78
70000 88287 10390 ~8 minutes

But ... how good are these solutions?

MIPS
MIPS
MIPS
MIPS

MIPS

IPOPT, Knitro



Convex relaxations of ACOPF

Why do we care about lower bounds?
Mixed-integer cases of ACOPF?

Do we want an alternative to interior point algorithms for computing good
solutions?
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ACOPF as a QCQP
(Quadratically Constrained Quadratic Program)

Skm -

(G — 3Brk) |Vi|? + (Gim — 7Bim) | V|| Vin| (cos Ok, + 7 sin Oy,

o - ¥
Vi
Skm = Vk >/ (Vm> Y:

— \

By

kw
complex power injected into km at k
)0y
\/k = leI
J G
V, = | Vile
QEM:;: 6)lo - 9""'

Gkk +.) ’B“‘ ka "’J Bku
G, +) B G50 4\)1?,",\

Admittance matrix for line km

L < Use rectangular coordinates for voltages



ACOPF as a QCQP

Skm =
(Gkk - jBkk) |V;6|2 + (ka _jBkm) |V;c||Vm|(COS Orm + J sin ekm)

Use rectangular coordinates for voltages

Gi( €2+ f?) + Gim( exem + frem) + Bim( —€xfm + frem)

Imaginary (“reactive”) part

Qrm = —Bi( €2+ f2) — Bim( exem + frem) + Gim( —exfm + frem)



McCormick relaxation - an important workhorse

w = Ty

IL IS IU !/1‘ R e yl' where IL . IU. yL . yU are upper and lower bound values for x and y respectively
Convex hull provided by under/over estimators y A Convex Overestimators —
i Convex Underestimators s |
yY :

The underestimators of the function are represented by:

I

L L L L . [ U U U
w2ry+ry — 7y cw2ry+ry — Yy

The overestimators of the function are represented by:

U L U L. U L L U
w<ry+ry —r Yy cw<zry +ry— Y

Works well in tandem with spatial branching

(source: Wikipedia)



And how well does it work?

Root relaxation 300 seconds Interior Point

2264.30 5301.40* 5296.69

30 0.00 154.08 576.89

118 0.00 0.00 129660.69
1354pegase 23037.69 23037.69 74069.35
ACTIVSg2000 649917.91 649917.91 1228892.08

(Gurobi 10 on QCQP)

Why so bad?

How about upper bounds?



A critical observation

Skm =
(Grk — 3Bik) |Vi|® + (Gkm — 3Bikm) |Vi||Vin|(cos Orm + J sin Ogyy,)

¥
Real (“active”) part

Pi, = Gre [Vi|? + Gim |Vi||Vin| €08 Okm + Bim |Vi||Vin| sin O,
Introduce new variables: ’vk = |Vk|?,  Ckm = |Vk||Vin| €08 Okm,  Skm = |Vi||Vin| sin O,
}
2
P = Gk ’U,(c) +  Gim Ckm + Bim Skm
2 2
And! C%:m + Slzcm S ,(c )’vr,(n) Jabr inequality

New variables can be related to rectangular coordinates for voltages

Py, = G( €2+ f2) + Gim( exem + frem) + Bim( —€xfm + frem)



Minimize ), Fi( P})

with constraints:

> kmes) Skm = Ciegm) B = Fi) + 1 icgw) QF — @1

VY branch km : Spm = Pem + 71Qrm
Py, = Gy 'v(z) + Gikm Ckm + Bim Skm
Qim = —Bik S —Bim Cim + Gim Skm
— v,(c) = e; + [, Ckm = €xem + fkfm, Skm = —€rfm + frem
Piri® + Qim” < Uim

ymin < () < pmax v pyg k

ppin < PI < plmax Y/ generator k



Minimize ), ; Fi( P})
with constraints:
> kmesr) Skm = Cicgry P — PY) + iCicoy QF — @)
VY branch km : Sk, = Pem + 7Qrm
Pim = Gt 02 + Gim Chom + B Skm

2
) _Bkm Ckm + ka Skm

Qrm = — Bk U(
= Gt S < VD
Pkm2 + ka2 S Ukm
ymin < (2 < ymax g ke
k — Yk =Yk

ppin < P9 < pmax Y/ generator ¢



We can see an improvement

Jabr relaxation | Relaxation time (s) Interior point
time (s)

5296.67 5296.69 0.24

30 573.58 0.03 576.89 0.47

118 129297.41 0.32 129660.69 0.24

1354pegase 740092.83 2.02 74069.35 2.45

ACTIVSg2000 1226328.77 4.29 1228892.08 3.01

3120sp 2130950.72 53.01 2142703.77 5.24

9241pegase 309238.37 31.00 315912.43 161.29

Larger examples Non-convergence!
9241pegase 84371.82 Root time: 400 s

Non-convex
(Gurobi 10 on SOCP)

Why?



Minimize ). Fi( P))
with constraints:
> kmesk) Skm = Qicg) Pi — P Y + 5> icquy Qi — Q%)
YV branch km : Sk = Pim + 71Qkm
P — G 'v(2) = G Clin = B B%in

Qrm = — Bk ’U;(cz)

—Bim ¢km —Grkm Skm
— 2 +s; < v,(gz)vg)
Pim® + Qrm® < Uim
Vmin < 98 < ymex y byg &

Prin < P7 < Pmax Y generator ¢

&
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Another critical observation

Skm =

(Grie — 3Bik) |Vi|* + (Gim — 3 Bikm) | V|| Vin|(c0s Ok + 7 sin Ogp,)

Real (“active”) part: P, = Gre [Vi|? + Gim |Vi||Vin| €08 Okm + Bim |Vi||Vin| sin Oxm

P, = Gk v’(cz) +  Gim Ckm + Bim Skm

Observation: Pkm + Pmk — power “loss” Z 0

(+ G. Munoz, 2014)

Using this inequality, and foregoing the (rotated cone) Jabr ineq., already yields a very tight relaxation (linear?)




Minimize ), .; Fi( P)

with constraints:

kaed(k) Skm = (Zzeg(k) P — ol d) '(Zzeg Qg Qi)
V branch km : Skm = Pim + 7Qkm
Pkm = Gkk v(2) 'y ka Ckm + Bkm Skm

Qrm = —Biy 'U;(cz)

_Bkm Ckm +ka Skm
Frow = doamw = () <
-l)k:m2 =+ ka2 S Uk‘m

ymin < ) < ymex v pys &

pPrn < PY < Pmax Y generator 4

&
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The almost linear formulation (gray = conic)

1354pegase

ACTIVSg2000

3120sp

3375wp

6468rte

9241pegase

ACTIVSg10k

13569pegase

ACTIVSg25k

ACTIVSg70k

730269.92

1201333.04

2061763.91
2130950.72

7267498.66

84117.84
unable to converge

304392.01
309238.37

2364513.20
unable to converge

372046.88
unable to converge

5802299.18
unable to converge

15305723.20
unable to converge

0.81

1.93

2.60

2.00

5.00
2.29

48.00

7.32

7.23

6.98

125

162.10
684.05

74069.35

1228892.08

2142703.77

7412072.19

unable to converge

315912.43

2485898.75

3861075.19

6017830.61

16439499.87

2.45

3.01

5.24

5.66

long

161.29

129.54

320.00

86.07

450.55



Skm =

(Grk — 3Brk) | Vie|* + (Grm — JBikm) |Vie||Vin|(cos O, + 7 sin Ory)

Gk > 0 > Gy, =G 2 —Grg, Brm = Bk

P, = Grr [Vil? + Girm |Vi||Vin| €08 Okm + Bim |Vi||Vin| sin Oxm
Py, = Gk v,(cz) + Gim Ckm + Bim Skm
P = Gmm ’U,(,f) + Gk Ckm — Bim Skm
2 . 2
Py, + Pre = Gk ’v,(c )+ Goum v + 2Gim Ckm > min{Gir, Grm }( ’v,(c ) + v2) — 2¢pm)

Frn + Shm < VR VI —

Pkm"'Pmk: 20

v,(cz) + vg) — 2Cley, = 0




Other convex relaxations

SDP (Semidefinite programming)
The tightest relaxation, but impracticable

OBBT
In the literature, applied to the SOCP formulation. Too expensive. LP-based?

Approximations to sine, cosine, arctangent.
Only valid when

Some of the inequalities are linear and some are convex quadratics or rotated cones

It has been claimed that these formulations lead to a better starting point for IPOPT

In our opinion, the Jabr inequality (or equivalent) does most of the work

But the convex nonlinear relaxations are too expensive. Linear is better.



Moving forward

The nonlinear formulation will become more widely used
Topology optimization
Binary variables used to turn off branches (or buses).

Configurable components

The ongoing GO (Grid Optimization) competitions have had killer interesting features
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! e e ] :\/“: -9 :\/kI

k

Grui *J tm., C"MM 4\)1?Mn
\ I Ohm’s Law

Complex current

Admittance matrix for line km




GO competition: configurable transformers and shunts

e Example: tap ratio and angle in a transformer can be adjusted

* - ; I
I > V5/N N*I, Y=0+jb v, _ m

e Impedance correction factors modeled using a piecewise-linear curve

>/ e,M’r;/

|
! | ( \V\Jreﬁf’/l’
| SO . Ve-viable

15888

e Function can be quite nonlinear with local optima

e Switched shunts, in blocks (at buses)

e Altogether, a large number of integer variables

&
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Let's get started: topology optimization on standard
ACOPF

Minimize ), . Fi( P)

with constraints:

Y branch km:
Skm —

zkm[ (Gat — 1Bix) [Vil® + (Grm — 5Bim) [Vl [Vin| (08 Bk + 5 5i B

2 = Qu0p

kaed(k) Skm = (Zz‘eg(k) 'Pig —ak Ig ) + 7 (Zieg(k) Qf - Qi)

Power flow limit on branch km:
|Skm|2 = ’Re( Skm)2 + Im( Skm)z € U

Voltage limit on bus k:
Vkmin S |‘/k: | S 'Vkmax

Generator output limits:

PPt < Py S PP ‘ GUROBI
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Convex relaxation + binary variables

Minimize ), ; Fi( P})

with constraints:

> kmesk) Skm = (Qicgwr) P} - P) + 3D ieqr Q! - Q})
Y branch km : Sk, = zkm[ Pi. + 71Qrm }, zkm € {0,1}
Py, = Gig v( )+ Gim Ckm + Bim Skm
Qkm = =Bk vy —Bim Ckm + Gim Skm
ci +si < 'v,(cz)'v,grzl)
Pir® + Qrm® < Uim
ymin < 32 < ymax g pyg g

ppin < PY < Pmax Y/ generator 4

&
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A mixed-integer set in topology optimization
Binary variables zg,

Zrkm = 1, if branch km is turned on,
0, otherwise.

Py, = Gk v,(cz) + Gim Ckm + Bim Skm
' P, = Grm 2+ Gk ¢km — Bim Skm
Zkm — 0 — Pkm = Pmk = Chm. = By = U

And in both cases:

Pkm‘l'Pmk: 20
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OPTIMIZATION SUCCESS STARTS HERE
Special opportunities for the academic community:

« Gurobi: Always free for academics
» Gurobi user community page

 Educational Resources:

Gurobi is also available to

recent graduates through
our Take Gurobi With
You Program

Email to learn more.

www.BurritoOptimizationGame.com
BURRITO"

OPTIMIZATION GAME
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QUESTIONS?

Thank You

For more information: gurobi.com

Dr. Daniel Bienstock
Columbia University

daniel bienstock@gurobi.com
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