What's New in the Gurobi Infeasibility Finder

Gurobi 9.1 Product Launch

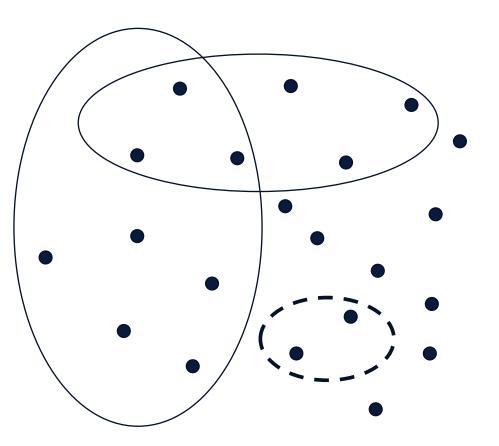
The World's Fastest Solver

Ed Klotz, Ed Rothberg, Yuriy Zinchenko, Ph.Ds December 8-9, 2020

Outline

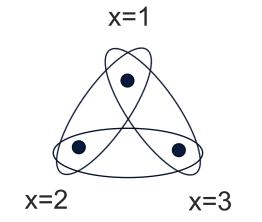
- Problem Statement
- IIS Fundamentals
 - Deletion
 - Certificates
 - Addition
- Performance
- Examples

Problem Statement

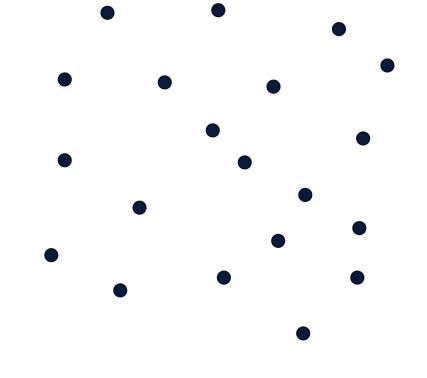


- Given an infeasible system of constraints...
 - Find a single Irreducible Inconsistent Subsystem (IIS)
 - Ax=b is infeasible
 - Removing any constraint renders the result feasible
 - IIS is minimal, not minimum
- Meant to guide a human to the source of the infeasibility
 - The smaller, the better
- Cost
 - Cheap for LP, very expensive for MIP

Depicting an IIS


- Graphical representation
 - One node = one constraint
 - One oval = one IIS
 - All 3 are minimal, but only the dashed one is minimum

- Model will typically have multiple IISs
- A trivial example:

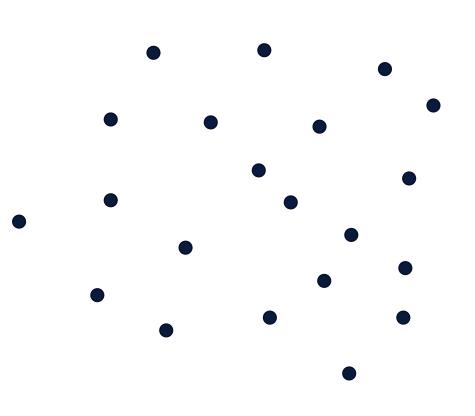


• But it will come back to haunt us later...

© 2020, Gurobi Optimization, LLC

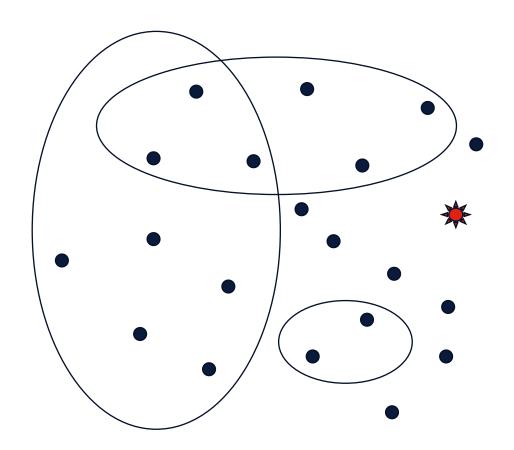
IIS Computation

- Maintain
 - C: infeasible constraint set, IIS candidate
 - Build down
 - K: known IIS members ($K \subseteq C$)
 - Build up
 - Stop when K = C



IIS Primitives

- Single-constraint deletion
- Multi-constraint deletion
- Independent (parallel) deletion
- Addition
- Computing IISs easier for LP since we can also use duality

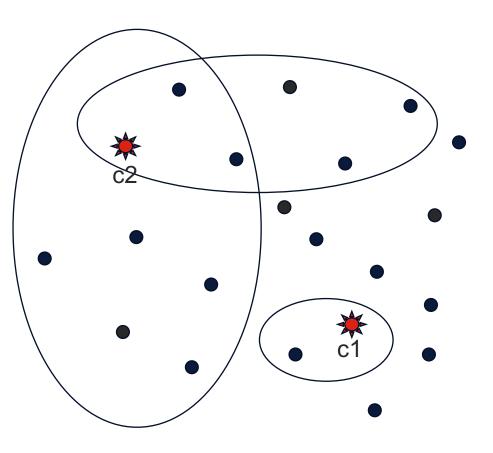


Single-Constraint Deletion

- Choose a constraint c
 - Perform (truncated) MIP solve on C\{c}

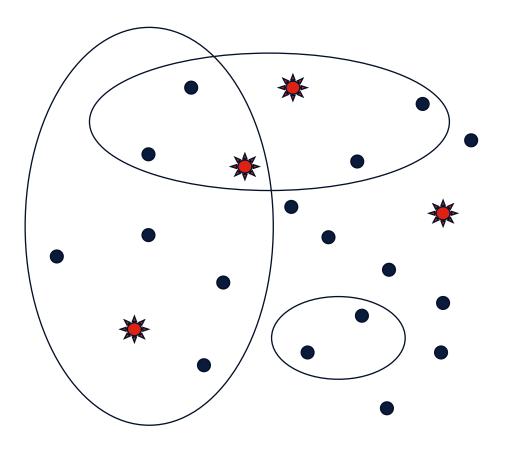
• Three possible outcomes:

- Still infeasible
 - Constraint can be removed from candidate set (C = C\{c})
- Feasible
 - Constraint belongs to every IIS in C (K = K ∪ {c})
 - No such constraint exists for first iteration in example on this slide
- MIP didn't finish
 - Probably infeasible (?)
 - No useful conclusion



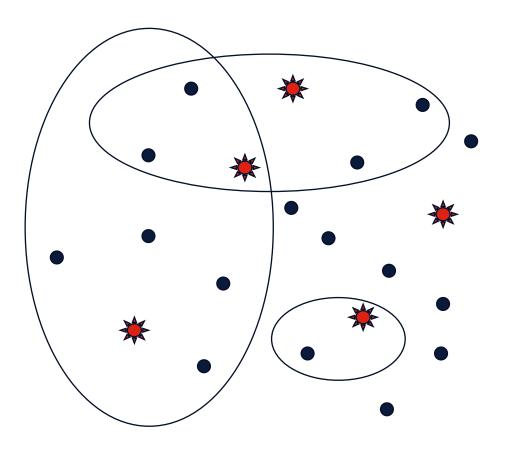
Feasible Outcome Requires a Cover

- To get a feasible outcome, removed constraint(s) must form a cover on all IISs in the model
 - Computing one IIS is cheaper than computing an IIS cover
 - After correcting the infeasibility in the computed IIS, additional IISs may remain
 - Correct the computed IIS, then compute another one
 - Correcting infeasibility doesn't always mean removal of constraint(s)
 - Could be relaxing constraint, adding new activities, or other changes

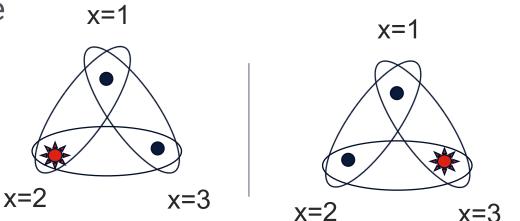


Remove c1 first \rightarrow c2 \in *K* (and vice versa)

Multi-Constraint Deletion

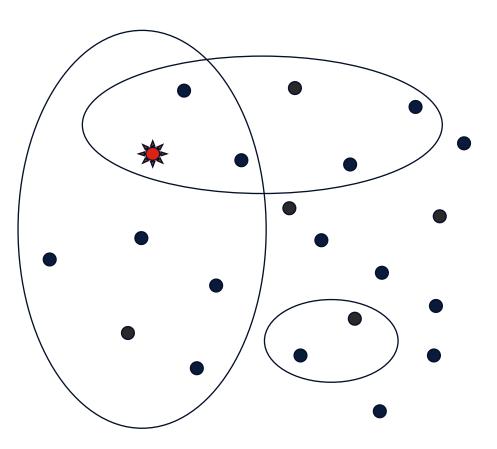

- Remove multiple constraints S
- Two possible outcomes:
 - Still infeasible
 - Constraints can be removed from candidate set (C = C \ S)
 - Feasible or incomplete
 - No useful conclusion
 - Unlike single constraint deletion, cannot augment the set of known members K

Multi-Constraint Deletion

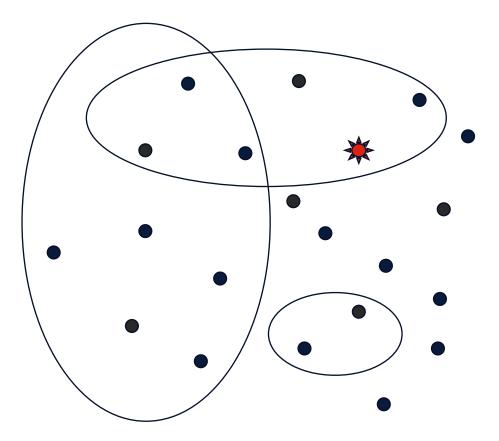

- Remove multiple constraints S
- Two possible outcomes:
 - Still infeasible
 - Constraints can be removed from candidate set (C = C \ S)
 - Feasible or incomplete
 - No useful conclusion
 - Unlike single constraint deletion, cannot augment the set of known members K

Simultaneous, Independent Deletion

- Removing x=2 and x=3 individually preserves infeasibility
- But can't remove both and preserve infeasibility
- Can only remove one of the k concurrently removed constraints



More Observations – Pruning IISs


 Removing a constraint from the candidate set removes all IISs that contain that constraint

Some Good News

 If you choose constraints to remove at random, smaller IISs are more likely to survive

Relentless Focus on Performance

• 9.1 versus 9.0, mean time to proven IIS:

Full set	Count	Loss/Win	TimeR
all:	222	46/ 111	0.501
>0s:	214	46/ 111	0.485
>1s:	156	41/ 107	0.381
>10s:	112	20/ 86	0.271
>100s:	76	11/ 62	0.175
>1000s:	53	7/ 45	0.117

- Nearly 2X improvement overall
- 5.7X improvement on the harder models (> 100s)

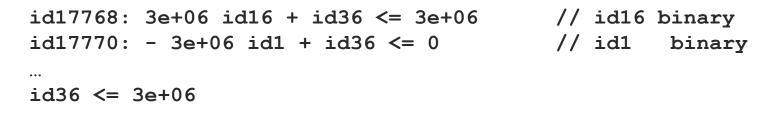
Remaining Challenges

- IIS computation still can be slow
- No good way to add multiple constraints to the known IIS member set at once
 - Requires MIP solve per element of set K (known IIS members)
 - Big IIS = Slow IIS
- No good way to exploit parallelism when IIS is small
- Limited ability to exploit presolve
 - Working on (almost) the whole original user model

Some Ideas Currently on the Table

- Filter on integrality "constraints"
 - Can work very well on some models
 - Not yet clear how to decide when to use
- If using FeasRelax to add new IIS members, consider examining IIS for the corresponding (infeasible) fixed LP as well
- Alternate between addition (FeasRelax) and deletion
 - Deletion to shrink candidate set
 - Addition to grow known IIS set

Examples: Explaining the Infeasibility



- Gurobi's infeasibility finder can be used for more than diagnosing infeasible problems
- It can explain any aspect of a model that can be phrased as a question about a related, infeasible model
 - How can I reduce some large big-M values in my model?
 - Which constraints or bounds in the model (i.e. limits in the associated physical system being modelled) prevent improvement in the optimal objective value?
 - Many others

Example: Reducing Large Big-M values

- cdma, an open MIPLIB 2017 model
 - Gurobi has found the best known solution, but MIPgap remains significant
 - Anything that can tighten the formulation could help
 - Wide spread of coefficients, even after presolve
 - Less important to reduce large values in original model if presolve already does so
 - Big-M style constraints (presolved model)

• Reduction in bound on id36 reduces coefficients in id17768, id17770

Example : Reducing Large Big-M values

 Create an infeasible model whose IIS will explain how to reduce the big-M values

\ id36 <= 3e+06 id36 >= 100000

- This model is infeasible
- Immediately deduce id36 <= 100000
- Can do better by looking at the IIS

Example : Reducing Large Big-M values

• IIS has 15 fairly dense conservation of flow constraints:

id17758: - id4759 - id4939 - id5299 - id5479 - id5839 - id6019 - id6379
- id6559 - id6739 - id6919 - id7099 + id7111 + id7123 + id7147 + id7159
+ id7183 + id7195 + id7219 + id7231 + id7243 + id7255 + id7267 - id7639

- id5850 - id6030 - id6390 - id6570 - id6750 - id6930 - id7110 + id7122
+ id7134 + id7158 + id7170 + id7194 + id7206 + id7230 + id7242 + id7254
+ id7266 + id7278 - id7650 - id7830 - id8190 + id50 = 0

And 5 fairly dense supply or demand constraints that force flow

id17929: id7855 + id7879 + id7891 + id7903 + id7915 + id7927 + id7951 + id7856 + id7880 + id7892 + id7904 + id7916 + id7928 + id7952 + id7857

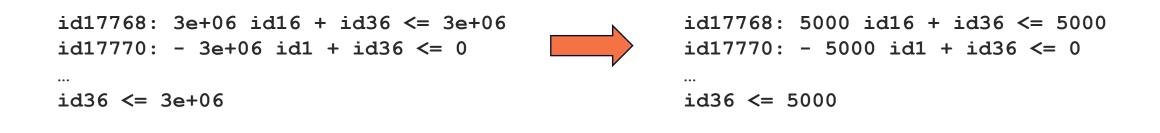
+ id8070 + id8082 + id8094 + id8106 + id8118 + id8154 + id8166 + id8178 + id8190 = 1000

...

...

Example: Reducing Large Big-M values

- Don't try to interpret the individual constraints in the IIS when combinations may simplify the analysis
- Try summing up the 20 constraints


Example: Reducing Large Big-M values

• Result of summing up the 20 constraints

id36 + id37 + id38 + id39 + id40 + id41 + id42 + id43 + id44 + id45 + id46 + id47 + id48 + id49 + id50 == 5000.0

- Deduce an upper bound of 5000 on id36
- · Reduce coefficients on constraints that depend on upper bound
- id37,..., id50 have the same bound and constraint structure

- Which constraints or bounds in the model (i.e. limits in the associated physical system being modelled) prevent improvement in the optimal objective value?
- Lotsize, a solved MIPLIB model on which Gurobi doesn't fare particularly well
 - 8.97 hours to prove optimality despite having found the optimal solution in a half hour
 - Extract info about the model by creating an infeasible model by adding a constraint on the objective

Examples

- Which constraints or bounds in the model (i.e. limits in the associated physical system being modelled) prevent improvement in the optimal objective value?
- Start of nodelog for lotsize:

Nodes Current Node Objective Bounds Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd It/Node Time Gap | 0 348385.347 - 348385.347 0 471 0s0 534372.642 0 598 - 534372.642 0 0s — 0 603722.884 0 689 - 603722.884 0 0s

- No integer feasible solution exists with these dual bound values
 - Constrain the objective to be <= 400000

• Resulting IIS

Cancellation by adding constraints

R0001: C0001 + C0601 - C1196 = 163R0002: C0002 - C0601 + C0602 + C1196 - C1197 = 144R0003: C0003 - C0602 + C0603 + C1197 - C1198 = 126R0004: C0004 - C0603 + C0604 + C1198 - C1199 = 196... R0599: C0599 - C1194 + C1195 + C1789 - C1790 = 79R0600: C0600 - C1195 + C1790 = 70R0601: $C0001 - 18298 C1791 \le 0 // C1791, ..., C2390$ fixed charge binaries R0602: $C0002 - 18298 C1792 \le 0$... R1191: $C0591 - 20019 C2381 \le 0$ R1194: $C0594 - 20019 C2381 \le 0$ R1200: $C0600 - 20019 C2390 \le 0$

Examples

- Interpret the IIS by looking at groups of constraints
 - Add the first 600 constraints in the IIS:

```
AGG: C0001 + C0002 + ... + C0600 = 93503 // must pay the cost ($1-10) for this flow

R0601: C0001 - 18298 C1791 <= 0 // C1791,...,C2390 fixed charge binaries

R0602: C0002 - 18298 C1792 <= 0 // C1791,...,C2390 fixed charge binaries

...

R1200: C0600 - 20019 C2390 <= 0 // Must pay some fixed charges ($5k - 40k)
```

- Explains why we cannot have a cost below 400000
- Added side benefit of a MIR style cut

```
93503 = C0001 + C0002 + ... + C0600 \leq 18298 C1791 + 18298 C1792 + ... + 20019 C2390 \rightarrow C1791 + C1792 + ... + C2390 >= 5
```


Improved performance

- MIR style cut from previous slide: 3.1 hours
- Refinement of this cut: 1.2 hours
- Based on the flow style of the constraints in the IIS and the cut we derived, just run original model with aggressive flow path, flow cover and MIR cuts
 - Time drops to 25 minutes
- IISs based on overconstrained objectives can facilitate our understanding of the essential parts of the model, and thus help us tighten the formulation
- IISs can be large
 - May need to interpret groups of constraints rather than individual ones

- Other questions we can answer by computing an IIS on the appropriate model
 - Why does Gurobi reject my MIP start?
 - What does it mean when Gurobi support says my model is on the boundary of feasibility and infeasibility?
 - Is a particular constraint or group of constraints in my model redundant?
 - Many more
- Pose the question in the context of an infeasible model

- Computing IISs for MILPs significantly more challenging than LPs
 - Need to solve a series of subMIPs
 - Parallelization has some challenges
- Computing IISs is more than just for infeasible models
 - Gurobi's Infeasibility Finder can explain many aspects of the model
- Therefore, we take improving IIS computation time as seriously as we do with other algorithms
 - Improvements in version 9.1 confirm this
- IISs can be large in size
 - Consider groups of constraints rather than individual ones

References

1. Chinneck, J.W., Feasibility and Infeasibility in Optimization, Springer.

Thank You – Questions?

The World's Fastest Solver