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• Parallelism in LP
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• Other metrics
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• Graphical Processing Unit (GPU)
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Important Concepts



Sources of Parallelism

• We exploit 3 sources of parallelism in Gurobi
• Parallel algorithms

• Divide up ‘fixed’ pile of work
• Diversity of algorithms

• Given a mix of algorithms…
• Run them all at once
• Stop when the first one finishes

• Performance variability
• Given an algorithm that can experience large performance swings on the same problem…

• Run multiple instances at once with multiple settings
• Stop when the first one finishes
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Non-determinism

• Parallel algorithms often exhibit non-deterministic behavior
• Same problem, same machine -> different (equivalent) results

• Nearly all Gurobi parallel algorithms are deterministic
• Same problem, same machine -> same result every time

• A few Gurobi parallel algorithms exhibit mild non-determinism
• A small number of possible outcomes
• Examples:

• Concurrent LP
• Concurrent MIP

• We avoid highly non-deterministic algorithms
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Determinism – How?

• Basic principle for avoiding non-determinism…
• Which thread finished first?
• Answer must be the same every time

• Options:
• Wall-clock time: not reliable
• CPU counters: not exposed, few are reliable
• Instrument the code

• Every algorithm in Gurobi makes an estimate of how much work it did
• Which thread finished first?
• The one with the smaller work estimate
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Parallelism in LP



Two Fundamental Algorithms for Linear 
Programming

• Simplex algorithm (primal and dual)
• Interior point (barrier) algorithm

• When considering parallelism in LP, more like…
• One workhorse (simplex)
• Plus one very sophisticated initial basis selection procedure (barrier)
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Simplex Algorithm

• Iterate until no more improving direction is found
• This is an optimal solution to the LP.

objective
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Simplex Algorithm – Linear Algebra

• Primal feasibility constraints

𝐴𝑥 = 𝑏
• Partition into basic and non-basic variables: 𝐴 = 𝐵,𝑁

• Non-basic structural variables correspond to tight bounds
• Non-basic slack variables correspond to tight constraints

𝐵𝑥! + 𝑁𝑥" = 𝑏
• Solve for basic variables

𝑥! = 𝐵#$ 𝑏 − 𝑁𝑥"
• Solved by maintaining

𝐵 = 𝐿𝑈
• Perform a sequence of pivots

• Swap one non-basic variable for one basic variable
• Update basis matrix (and basis factor)

NB b=Nx

Bx

×

© 2020, Gurobi Optimization, LLC12



Simplex Log

Iteration    Objective       Primal Inf.    Dual Inf.      Time
0    1.7748600e+04   6.627132e+03   0.000000e+00      0s

9643    1.1574611e+07   1.418653e+03   0.000000e+00      5s
14440    1.1607748e+07   4.793500e+00   0.000000e+00     10s
15213    1.1266396e+07   0.000000e+00   0.000000e+00     11s

Solved in 15213 iterations and 10.86 seconds
Optimal objective  1.126639605e+07
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Interior Point Method

• Jump to the analytic center of the optimal face

objective
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Interior Point Method

• Basic algorithm [Dikin, 1967, Karmarkar, 1984, Fiacco & McCormick, 1990]:
• Modify KKT conditions:

𝐴𝑥 = 𝑏
𝐴!𝑦 + 𝑧 = 𝑐
𝑥!𝑧 = 0

𝐴𝑥 = 𝑏
𝐴!𝑦 + 𝑧 = 𝑐
𝑋𝑧 = 𝜇𝑒

(𝑋 = diag(𝑥))

• Linearize complementarity condition:

−𝜃 𝐴!
𝐴 0

𝑑𝑥
𝑑𝑦 =

𝑟"
𝑟# (augmented system)

𝜃$ = ⁄𝑧$ 𝑥$ ,   𝑥$ 4 𝑧$ = 0 at optimality, so 𝜃$→0 or ∞

• Further simplification: 𝐴𝜃%#𝐴!𝑑𝑦 = 𝑏 (normal equations)

• Iterate, reducing 𝜇 in each iteration
• Provable convergence

© 2020, Gurobi Optimization, LLC15



Interior Point Computational Steps

• Setup steps:
• Presolve (same for simplex)
• Compute fill-reducing ordering
• Symbolic factorization – allocate static data structures for factor

• In each iteration:
• Form 𝐴𝜃%#𝐴!

• Factor 𝐴𝜃%#𝐴! = 𝐿𝐷𝐿! (Cholesky factorization)
• Solve 𝐿𝐷𝐿!𝑥 = 𝑏
• A few 𝐴𝑥 and 𝐴!𝑥 computations
• A bunch of vector operations

• Post-processing steps:
• Perform crossover to a basic solution

• Optional, but typical
• Especially when solving LP relaxations in a MIP solve
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Barrier Log

Barrier statistics:
AA' NZ     : 2.836e+03
Factor NZ  : 3.551e+03 (roughly 40 MBytes of memory)
Factor Ops : 1.739e+05 (less than 1 second per iteration)
Threads    : 4

Objective                Residual
Iter       Primal          Dual         Primal    Dual     Compl     Time

0   1.30273209e+06  0.00000000e+00  5.90e+02 0.00e+00  7.32e+00    12s
1   1.04326180e+05 -5.84079103e+02  4.84e+01 1.69e+00  5.95e-01    12s
2   9.46325157e+03 -4.40392705e+02  2.92e+00 1.35e+00  5.46e-02    12s
3   3.66683689e+03  9.27381244e+02  1.94e-01 5.35e-01  1.41e-02    12s
4   3.37449982e+03  1.79938013e+03  1.29e-01 2.41e-01  7.64e-03    12s
5   3.13244138e+03  1.90266941e+03  8.89e-02 2.07e-01  6.00e-03    12s
6   2.71282610e+03  2.11401255e+03  3.20e-02 1.15e-01  2.96e-03    12s
7   2.48856811e+03  2.18107490e+03  1.06e-02 7.26e-02  1.56e-03    12s
8   2.35427593e+03  2.21183615e+03  3.20e-03 4.52e-02  7.36e-04    12s
9   2.30239737e+03  2.22464753e+03  1.53e-03 2.38e-02  4.03e-04    12s

10   2.25547118e+03  2.23096162e+03  3.00e-04 1.40e-02  1.30e-04    12s
11   2.24052450e+03  2.23917612e+03  4.10e-06 6.33e-04  7.20e-06    12s
12   2.23967243e+03  2.23966346e+03  2.01e-08 5.01e-06  4.82e-08    12s
13   2.23966667e+03  2.23966666e+03  1.11e-10 1.14e-13  4.81e-11    13s

Barrier solved model in 13 iterations and 12.51 seconds
Optimal objective 2.23966667e+03
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Crossover Log

Barrier solved model in 13 iterations and 12.51 seconds
Optimal objective 2.23966667e+03

Root crossover log...

40 DPushes remaining with DInf 0.0000000e+00                13s
0 DPushes remaining with DInf 7.8159701e-14                13s

1176 PPushes remaining with PInf 0.0000000e+00                13s
0 PPushes remaining with PInf 0.0000000e+00                13s

Push phase complete: Pinf 0.0000000e+00, Dinf 1.2079227e-13     13s

Root simplex log...

Iteration    Objective       Primal Inf.    Dual Inf.      Time
1219    2.2396667e+03   0.000000e+00   0.000000e+00     13s
1219    2.2396667e+03   0.000000e+00   0.000000e+00     13s

Root relaxation: objective 2.239667e+03, 1219 iterations, 0.43 seconds

© 2020, Gurobi Optimization, LLC18



Essential Differences for Parallelism

• Simplex:
• Thousand/millions of iterations on extremely sparse matrices
• Each iteration extremely cheap
• Very limited opportunities to exploit parallel

• Barrier:
• Dozens of expensive iterations
• Much denser matrices
• Lots of opportunities to exploit parallelism

• But…
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Concurrent LP

• Run both simplex and barrier simultaneously
• Thread 1: Dual simplex
• Thread 2: Barrier
• Thread 3: Barrier
• Thread 4: Barrier
• Thread 5: Primal simplex
• Thread n≥6: Barrier

• Solution is reported by first one to finish
• Use multiple CPU cores to exploit a diverse set of algorithms
• Best mix of speed and robustness
• Deterministic and non-deterministic versions available

© 2020, Gurobi Optimization, LLC20



LP Performance

• Performance results:
• Simplex on 1 core, barrier on all available cores
• Concurrent:

• 4 cores: 1 thread dual, 3 threads barrier
• 16 cores: 1 thread primal, 1 thread dual, 14 threads barrier

• Models that take >1s
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GeoMean
Primal simplex 3.65
Dual simplex 2.25
Barrier 1.20
Concurrent 1.00
Deterministic Concurrent 1.13

4-core Xeon E3-1240

GeoMean
Primal simplex 3.73
Dual simplex 2.56
Barrier 1.27
Concurrent 1.00
Deterministic Concurrent 1.20

16-core EPYC 7282
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Parallel Barrier Performance



Parallel Barrier Performance

• Speedups from adding cores
• On our internal LP test set

• 1299 models
• AMD EPYC 7282 (16 cores, 2.8GHz base, 3.2GHz boost, 64GB 2933MHz DDR4)
• Relative to one core
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# models P=1 P=2 P=4 P=8 P=16

>1s 602 1.00 1.28 1.54 1.76 1.92

>10s 430 1.00 1.34 1.69 1.97 2.20

>100s 249 1.00 1.46 1.86 2.22 2.56

Tests run 2020-07-18



Barrier Runtime Breakdown

• Fraction of total runtime (>1s, 602 models)
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Tests run 2020-07-18

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

P=1 P=2 P=4 P=8 P=16

Presolve Factorization Solve Crossover



Barrier Runtime Breakdown

• Fraction of total runtime (>100s, 249 models)
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Tests run 2020-07-18
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Parallelism in MIP



MIP Solution Framework: LP-based Branch-and-
Bound
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Parallel MIP = Parallel Branch and Bound

• MIP explores a tree of relaxations

• Frontier nodes are independent and can be explored in parallel
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Parallel MIP Performance

• Speedups from adding cores
• On our internal MIP test set

• 3965 models
• AMD EPYC 7282 (16 cores, 2.8GHz base, 3.2GHz boost, 64GB 2933MHz DDR4)
• Relative to one core

29 © 2020, Gurobi Optimization, LLC

# models P=1 P=2 P=4 P=8 P=16

>1s 2654 1.00 1.26 1.72 1.96 2.11

>10s 1907 1.00 1.32 1.91 2.24 2.47

>100s 1087 1.00 1.42 2.21 2.74 3.08

>1000s 319 1.00 1.68 3.03 3.86 4.22

Tests run 2020-07-20



Parallel MIP Performance Versus Optimality Gap

• Parallel speedup versus optimality gap (>100s – 1087 models)
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Tests run 2020-07-20
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What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree
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What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree
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What Happens at a Node?

• Multiple steps at each node
• Node presolve
• LP relaxation solve
• Cutting planes
• Heuristics
• Branch variable selection
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What Happens at the Root?

• Root node repeats these steps many 
times
• 10+ passes not unusual

• Vital to make as much progress as 
possible before branching 
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Parallelism at the Root

• Options for exploiting 
multiple cores at the root?

• Exploit performance 
variability [Fischetti, Lodi, 
Monaci, Salvagnin, 2014]
• Start one or more helper

threads
• Same steps as main thread, 

but perturbed slightly
• Feed results back to main 

thread
• Heuristic solutions
• Cutting planes

• Limited benefit
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What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree
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Parallel MIP Performance (By Node Count)

• Geometric mean speedup on 16 cores
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Tests run 2020-07-20
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What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree
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What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree
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Other Options



Concurrent MIP

• Use ConcurrentMIP=n parameter
• n independent MIP jobs

• Divide available threads among requested jobs
• Example: 24 threads available, ConcurrentMIP=4: 4 jobs, 6 threads each

• Results combined automatically
• Settings

• Default: different random seeds
• User can control with concurrent environments

• Non-deterministic

• Scope for improvement
• Exploit unpredictability

• Best (random) result wins
• Focus on different goals simultaneously

• E.g., one run works on lower bound (cuts, etc.), one works on upper bound (heuristics, etc.)

• Not as effective as you might hope in general
• Some notable exceptions
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Concurrent MIP – How To

• Simplest approach: use ConcurrentSettings command-line parameter
• MIPFocus1.prm:    MIPFocus 1 (focus on feasible solutions)
• MIPFocus3.prm:    MIPFocus 3 (focus on lower bound)

• Result for model dg012142…
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Nodes    |    Current Node    |     Objective Bounds      |     Work
Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd Gap | It/Node Time

…
0     2      - - - 6492675.78 778732.766  88.0%     - 8s

83    92      - - - 5148647.37 785662.888  84.7%     - 10s
149   156      - - - 3044594.17 785662.888  74.2%     - 19s
180   187      - - - 2984859.29 785662.888  73.7%     - 22s
188   195      - - - 2727098.75 836163.745  69.3%     - 26s
196   233      - - - 2720275.25 859256.557  68.4%     - 36s

Nodes    |    Current Node    |     Objective Bounds      |     Work
Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd Gap | It/Node Time

…
0     2 772593.572    0  410 3.7336e+07 772593.572  97.9%     - 2s

H  126   129                    3.181386e+07 775156.902  97.6%   230    3s
H  365   374                    2.537530e+07 775156.902  96.9%   195    3s

623   651 1484472.12   29  330 2.5375e+07 775156.902  96.9%   193    5s
H  625   651                    2.228999e+07 775156.902  96.5%   192    5s
H  635   651                    1.700295e+07 775156.902  95.4%   192    5s
H  649   651                    1.524965e+07 775156.902  94.9%   191    5s
H 1309  1146                    5265663.3333 775156.902  85.3%   162    9s
H 1312  1144                    5032846.8222 775156.902  84.6%   162    9s
H 1316  1123                    4228610.0476 775156.902  81.7%   162    9s
H 1320  1107                    3836260.5089 775156.902  79.8%   162    9s
H 1322  1101                    3628016.2000 775156.902  78.6%   163    9s
H 1346  1101                    3575756.5000 775156.902  78.3%   162    9s
1530  1212 782874.062    6  367 3575756.50 775636.708  78.3%   155   10s
2466  1926 1301398.44   29  410 3575756.50 775636.708  78.3%   144   17s
2483  1937 3018571.09   72  425 3575756.50 775686.218  78.3%   143   20s
2513  1960 779009.893   12  424 3575756.50 779009.893  78.2%   146   29s
2535  1983 2621748.16   16  340 3575756.50 780507.097  78.2%   148   30s

Default settingsConcurrentSettings=MipFocus1.prm,MipFocus3.prm
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Distributed Algorithms



Distributed Architecture

• Multiple, ideally identical machines connected 
by a network
• On premise
• Gurobi Instant Cloud

• Manager-worker paradigm
• Manager distributes work among workers
• Workers perform work and report results
• Manager collects results
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Distributed MIP

• Use DistributedMIPJobs=n parameter
• Actually a combination of concurrent and parallel tree exploration

• Ramp up: concurrent for a limited number of nodes [ParaSCIP, 2010]
• Parallel tree exploration: continue with the ‘best’ concurrent result

• Dramatically higher node throughput…
• …when the search tree makes lots of independent nodes available

• Easy to try using Gurobi Instant Cloud
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Model 1 Machine 16 Machines 32 Machines

danoint 1933s
912K nodes

196s
9.9X faster

128s
15.1X faster

Gurobi Version 9.0.3
Intel Xeon E3-1240 v3 CPUs



Distributed Tuning

• Automatic parameter tuning
• Use TuneJobs=n parameter for distributed parallel tuning
• Trivially parallel

• Explore different parameter settings in parallel

• Typical to get linear parallel speedups
• With 24 machines, a day becomes an hour
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Other Metrics



Thread Control on a Shared Machine

• Imagine multiple optimization jobs share a single machine
• How many threads should each one use?

• Too few: leave cores idle
• Too many: multiple jobs fight over cores
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Thread Control on a Shared Machine

• Instead of measuring completion time for one model, measure machine throughput
• Number of times model danoint can be solved in our hour
• Running 1, 2, 4, 8, 16 or 16 jobs simultaneously, using different per-job core counts
• 24-core Intel Xeon Gold 5118, 2.3GHz, 512GB DDR3 system

• No need to worry about matching thread count to core count
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Threads per job 1 Job 2 Jobs 4 Jobs 8 Jobs 16 Jobs

12 15.0 27.7 38.9 38.4 38.0

19 38.0 38.4

24 27.7 40.7 40.0 39.9 38.9

Tests run 2020-08-08
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Other Architectures



Graphical Processing Unit (GPU) Computing

• Single-Instruction Multiple-Data (SIMD) Computing
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Quantum Computing
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Quantum Computing

• Interesting future technology
• Potential to substantially speed up optimization tasks
• Currently still a science project
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Conclusions

• Parallelism used throughout the Gurobi Optimizer
• LP (barrier and concurrent)
• MIP
• Distributed MIP
• Distributed tuning

• Significant performance improvements in most cases
• Not linear
• Problem dependent

• Continued focus area
• Parallelism continues to become more important
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Thank You – Questions?



Your Next Steps

• Try Gurobi 9.0 Now!

• Get a 30-day commercial trial license of Gurobi at www.gurobi.com/free-trial

• Academic and research licenses are free! 

• For questions about Gurobi pricing, please contact sales@gurobi.com or sales@gurobi.de

• A recording of this webinar, including the slides, will be available in roughly one week.
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