
Parallelism in LP and MIP

Thank you for joining us. We will be starting shortly.

Today’s Speaker

© 2020, Gurobi Optimization, LLC2

Ed Rothberg

CEO, Co-Founder

Gurobi Optimization

How to Exploit Parallelism in Linear Programming
and Mixed-Integer Programming

Ed Rothberg, CEO & Co-founder, Gurobi Optimization

Outline

• Parallelism in LP
• Parallelism in MIP
• Distributed algorithms

• Distributed MIP
• Distributed tuning
• Distributed concurrent

• Other metrics
• Maximizing throughput on a parallel server

• Other architectures
• Graphical Processing Unit (GPU)
• Quantum computer

© 2020, Gurobi Optimization, LLC4

© 2020, Gurobi Optimization, LLC5

Important Concepts

Sources of Parallelism

• We exploit 3 sources of parallelism in Gurobi
• Parallel algorithms

• Divide up ‘fixed’ pile of work
• Diversity of algorithms

• Given a mix of algorithms…
• Run them all at once
• Stop when the first one finishes

• Performance variability
• Given an algorithm that can experience large performance swings on the same problem…

• Run multiple instances at once with multiple settings
• Stop when the first one finishes

© 2020, Gurobi Optimization, LLC6

Non-determinism

• Parallel algorithms often exhibit non-deterministic behavior
• Same problem, same machine -> different (equivalent) results

• Nearly all Gurobi parallel algorithms are deterministic
• Same problem, same machine -> same result every time

• A few Gurobi parallel algorithms exhibit mild non-determinism
• A small number of possible outcomes
• Examples:

• Concurrent LP
• Concurrent MIP

• We avoid highly non-deterministic algorithms

© 2020, Gurobi Optimization, LLC7

Determinism – How?

• Basic principle for avoiding non-determinism…
• Which thread finished first?
• Answer must be the same every time

• Options:
• Wall-clock time: not reliable
• CPU counters: not exposed, few are reliable
• Instrument the code

• Every algorithm in Gurobi makes an estimate of how much work it did
• Which thread finished first?
• The one with the smaller work estimate

© 2020, Gurobi Optimization, LLC8

© 2020, Gurobi Optimization, LLC9

Parallelism in LP

Two Fundamental Algorithms for Linear
Programming

• Simplex algorithm (primal and dual)
• Interior point (barrier) algorithm

• When considering parallelism in LP, more like…
• One workhorse (simplex)
• Plus one very sophisticated initial basis selection procedure (barrier)

© 2020, Gurobi Optimization, LLC10

Simplex Algorithm

• Iterate until no more improving direction is found
• This is an optimal solution to the LP.

objective

© 2020, Gurobi Optimization, LLC11

Simplex Algorithm – Linear Algebra

• Primal feasibility constraints

𝐴𝑥 = 𝑏
• Partition into basic and non-basic variables: 𝐴 = 𝐵,𝑁

• Non-basic structural variables correspond to tight bounds
• Non-basic slack variables correspond to tight constraints

𝐵𝑥! + 𝑁𝑥" = 𝑏
• Solve for basic variables

𝑥! = 𝐵#$ 𝑏 − 𝑁𝑥"
• Solved by maintaining

𝐵 = 𝐿𝑈
• Perform a sequence of pivots

• Swap one non-basic variable for one basic variable
• Update basis matrix (and basis factor)

NB b=Nx

Bx

×

© 2020, Gurobi Optimization, LLC12

Simplex Log

Iteration Objective Primal Inf. Dual Inf. Time
0 1.7748600e+04 6.627132e+03 0.000000e+00 0s

9643 1.1574611e+07 1.418653e+03 0.000000e+00 5s
14440 1.1607748e+07 4.793500e+00 0.000000e+00 10s
15213 1.1266396e+07 0.000000e+00 0.000000e+00 11s

Solved in 15213 iterations and 10.86 seconds
Optimal objective 1.126639605e+07

© 2020, Gurobi Optimization, LLC13

Interior Point Method

• Jump to the analytic center of the optimal face

objective

© 2020, Gurobi Optimization, LLC14
central path

Interior Point Method

• Basic algorithm [Dikin, 1967, Karmarkar, 1984, Fiacco & McCormick, 1990]:
• Modify KKT conditions:

𝐴𝑥 = 𝑏
𝐴!𝑦 + 𝑧 = 𝑐
𝑥!𝑧 = 0

𝐴𝑥 = 𝑏
𝐴!𝑦 + 𝑧 = 𝑐
𝑋𝑧 = 𝜇𝑒

(𝑋 = diag(𝑥))

• Linearize complementarity condition:

−𝜃 𝐴!
𝐴 0

𝑑𝑥
𝑑𝑦 =

𝑟"
𝑟# (augmented system)

𝜃$ = ⁄𝑧$ 𝑥$, 𝑥$ 4 𝑧$ = 0 at optimality, so 𝜃$→0 or ∞

• Further simplification: 𝐴𝜃%#𝐴!𝑑𝑦 = 𝑏 (normal equations)

• Iterate, reducing 𝜇 in each iteration
• Provable convergence

© 2020, Gurobi Optimization, LLC15

Interior Point Computational Steps

• Setup steps:
• Presolve (same for simplex)
• Compute fill-reducing ordering
• Symbolic factorization – allocate static data structures for factor

• In each iteration:
• Form 𝐴𝜃%#𝐴!

• Factor 𝐴𝜃%#𝐴! = 𝐿𝐷𝐿! (Cholesky factorization)
• Solve 𝐿𝐷𝐿!𝑥 = 𝑏
• A few 𝐴𝑥 and 𝐴!𝑥 computations
• A bunch of vector operations

• Post-processing steps:
• Perform crossover to a basic solution

• Optional, but typical
• Especially when solving LP relaxations in a MIP solve

© 2020, Gurobi Optimization, LLC16

Barrier Log

Barrier statistics:
AA' NZ : 2.836e+03
Factor NZ : 3.551e+03 (roughly 40 MBytes of memory)
Factor Ops : 1.739e+05 (less than 1 second per iteration)
Threads : 4

Objective Residual
Iter Primal Dual Primal Dual Compl Time

0 1.30273209e+06 0.00000000e+00 5.90e+02 0.00e+00 7.32e+00 12s
1 1.04326180e+05 -5.84079103e+02 4.84e+01 1.69e+00 5.95e-01 12s
2 9.46325157e+03 -4.40392705e+02 2.92e+00 1.35e+00 5.46e-02 12s
3 3.66683689e+03 9.27381244e+02 1.94e-01 5.35e-01 1.41e-02 12s
4 3.37449982e+03 1.79938013e+03 1.29e-01 2.41e-01 7.64e-03 12s
5 3.13244138e+03 1.90266941e+03 8.89e-02 2.07e-01 6.00e-03 12s
6 2.71282610e+03 2.11401255e+03 3.20e-02 1.15e-01 2.96e-03 12s
7 2.48856811e+03 2.18107490e+03 1.06e-02 7.26e-02 1.56e-03 12s
8 2.35427593e+03 2.21183615e+03 3.20e-03 4.52e-02 7.36e-04 12s
9 2.30239737e+03 2.22464753e+03 1.53e-03 2.38e-02 4.03e-04 12s

10 2.25547118e+03 2.23096162e+03 3.00e-04 1.40e-02 1.30e-04 12s
11 2.24052450e+03 2.23917612e+03 4.10e-06 6.33e-04 7.20e-06 12s
12 2.23967243e+03 2.23966346e+03 2.01e-08 5.01e-06 4.82e-08 12s
13 2.23966667e+03 2.23966666e+03 1.11e-10 1.14e-13 4.81e-11 13s

Barrier solved model in 13 iterations and 12.51 seconds
Optimal objective 2.23966667e+03

© 2020, Gurobi Optimization, LLC17

Crossover Log

Barrier solved model in 13 iterations and 12.51 seconds
Optimal objective 2.23966667e+03

Root crossover log...

40 DPushes remaining with DInf 0.0000000e+00 13s
0 DPushes remaining with DInf 7.8159701e-14 13s

1176 PPushes remaining with PInf 0.0000000e+00 13s
0 PPushes remaining with PInf 0.0000000e+00 13s

Push phase complete: Pinf 0.0000000e+00, Dinf 1.2079227e-13 13s

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
1219 2.2396667e+03 0.000000e+00 0.000000e+00 13s
1219 2.2396667e+03 0.000000e+00 0.000000e+00 13s

Root relaxation: objective 2.239667e+03, 1219 iterations, 0.43 seconds

© 2020, Gurobi Optimization, LLC18

Essential Differences for Parallelism

• Simplex:
• Thousand/millions of iterations on extremely sparse matrices
• Each iteration extremely cheap
• Very limited opportunities to exploit parallel

• Barrier:
• Dozens of expensive iterations
• Much denser matrices
• Lots of opportunities to exploit parallelism

• But…

© 2020, Gurobi Optimization, LLC19

Concurrent LP

• Run both simplex and barrier simultaneously
• Thread 1: Dual simplex
• Thread 2: Barrier
• Thread 3: Barrier
• Thread 4: Barrier
• Thread 5: Primal simplex
• Thread n≥6: Barrier

• Solution is reported by first one to finish
• Use multiple CPU cores to exploit a diverse set of algorithms
• Best mix of speed and robustness
• Deterministic and non-deterministic versions available

© 2020, Gurobi Optimization, LLC20

LP Performance

• Performance results:
• Simplex on 1 core, barrier on all available cores
• Concurrent:

• 4 cores: 1 thread dual, 3 threads barrier
• 16 cores: 1 thread primal, 1 thread dual, 14 threads barrier

• Models that take >1s

© 2020, Gurobi Optimization, LLC21

GeoMean
Primal simplex 3.65
Dual simplex 2.25
Barrier 1.20
Concurrent 1.00
Deterministic Concurrent 1.13

4-core Xeon E3-1240

GeoMean
Primal simplex 3.73
Dual simplex 2.56
Barrier 1.27
Concurrent 1.00
Deterministic Concurrent 1.20

16-core EPYC 7282

© 2020, Gurobi Optimization, LLC22

Parallel Barrier Performance

Parallel Barrier Performance

• Speedups from adding cores
• On our internal LP test set

• 1299 models
• AMD EPYC 7282 (16 cores, 2.8GHz base, 3.2GHz boost, 64GB 2933MHz DDR4)
• Relative to one core

23 © 2020, Gurobi Optimization, LLC

models P=1 P=2 P=4 P=8 P=16

>1s 602 1.00 1.28 1.54 1.76 1.92

>10s 430 1.00 1.34 1.69 1.97 2.20

>100s 249 1.00 1.46 1.86 2.22 2.56

Tests run 2020-07-18

Barrier Runtime Breakdown

• Fraction of total runtime (>1s, 602 models)

24 © 2020, Gurobi Optimization, LLC

Tests run 2020-07-18

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

P=1 P=2 P=4 P=8 P=16

Presolve Factorization Solve Crossover

Barrier Runtime Breakdown

• Fraction of total runtime (>100s, 249 models)

25 © 2020, Gurobi Optimization, LLC

Tests run 2020-07-18

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

P=1 P=2 P=4 P=8 P=16

Presolve Factorization Solve Crossover

© 2020, Gurobi Optimization, LLC26

Parallelism in MIP

MIP Solution Framework: LP-based Branch-and-
Bound

© 2020, Gurobi Optimization, LLC27

G
A
P

Root

Integer

v £ 3 v ³ 4

x £
2 x ³ 3

y £
0 y ³ 1

z £
0 z ³ 1

Integer

Infeas

z £
0 z ³ 1

Lower Bound

Upper Bound

Solve LP relaxation:
v=3.5 (fractional)

Parallel MIP = Parallel Branch and Bound

• MIP explores a tree of relaxations

• Frontier nodes are independent and can be explored in parallel

© 2020, Gurobi Optimization, LLC28

Parallel MIP Performance

• Speedups from adding cores
• On our internal MIP test set

• 3965 models
• AMD EPYC 7282 (16 cores, 2.8GHz base, 3.2GHz boost, 64GB 2933MHz DDR4)
• Relative to one core

29 © 2020, Gurobi Optimization, LLC

models P=1 P=2 P=4 P=8 P=16

>1s 2654 1.00 1.26 1.72 1.96 2.11

>10s 1907 1.00 1.32 1.91 2.24 2.47

>100s 1087 1.00 1.42 2.21 2.74 3.08

>1000s 319 1.00 1.68 3.03 3.86 4.22

Tests run 2020-07-20

Parallel MIP Performance Versus Optimality Gap

• Parallel speedup versus optimality gap (>100s – 1087 models)

30 © 2020, Gurobi Optimization, LLC

Tests run 2020-07-20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P=2 P=4 P=8 P=16

10% 1% 0.10%

What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree

© 2020, Gurobi Optimization, LLC31

What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree

© 2020, Gurobi Optimization, LLC32

What Happens at a Node?

• Multiple steps at each node
• Node presolve
• LP relaxation solve
• Cutting planes
• Heuristics
• Branch variable selection

© 2020, Gurobi Optimization, LLC33

Presolve

Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

One node

What Happens at the Root?

• Root node repeats these steps many
times
• 10+ passes not unusual

• Vital to make as much progress as
possible before branching

© 2020, Gurobi Optimization, LLC34

Presolve

Root LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Root node

Parallelism at the Root

• Options for exploiting
multiple cores at the root?

• Exploit performance
variability [Fischetti, Lodi,
Monaci, Salvagnin, 2014]
• Start one or more helper

threads
• Same steps as main thread,

but perturbed slightly
• Feed results back to main

thread
• Heuristic solutions
• Cutting planes

• Limited benefit

© 2020, Gurobi Optimization, LLC35

Presolve

Discarded

Root LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Main thread

Root LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Helper thread

What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree

© 2020, Gurobi Optimization, LLC36

2654

1836

1412

719

0

500

1000

1500

2000

2500

3000

All >100 nodes >1000 nodes >10000 nodes

Models

Parallel MIP Performance (By Node Count)

• Geometric mean speedup on 16 cores

37 © 2020, Gurobi Optimization, LLC

Tests run 2020-07-20

0

1

2

3

4

5

6

>1s >10s >100s >1000s

All >100 nodes >10000 nodes

What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree

© 2020, Gurobi Optimization, LLC38

What Limits MIP Parallelism?

• Tree shape
• Fraction of time spent at the root
• Total number of nodes explored
• Load balancing
• Topology of the tree

© 2020, Gurobi Optimization, LLC39

© 2020, Gurobi Optimization, LLC40

Other Options

Concurrent MIP

• Use ConcurrentMIP=n parameter
• n independent MIP jobs

• Divide available threads among requested jobs
• Example: 24 threads available, ConcurrentMIP=4: 4 jobs, 6 threads each

• Results combined automatically
• Settings

• Default: different random seeds
• User can control with concurrent environments

• Non-deterministic

• Scope for improvement
• Exploit unpredictability

• Best (random) result wins
• Focus on different goals simultaneously

• E.g., one run works on lower bound (cuts, etc.), one works on upper bound (heuristics, etc.)

• Not as effective as you might hope in general
• Some notable exceptions

© 2020, Gurobi Optimization, LLC41

Concurrent MIP – How To

• Simplest approach: use ConcurrentSettings command-line parameter
• MIPFocus1.prm: MIPFocus 1 (focus on feasible solutions)
• MIPFocus3.prm: MIPFocus 3 (focus on lower bound)

• Result for model dg012142…

© 2020, Gurobi Optimization, LLC42

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

…
0 2 - - - 6492675.78 778732.766 88.0% - 8s

83 92 - - - 5148647.37 785662.888 84.7% - 10s
149 156 - - - 3044594.17 785662.888 74.2% - 19s
180 187 - - - 2984859.29 785662.888 73.7% - 22s
188 195 - - - 2727098.75 836163.745 69.3% - 26s
196 233 - - - 2720275.25 859256.557 68.4% - 36s

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

…
0 2 772593.572 0 410 3.7336e+07 772593.572 97.9% - 2s

H 126 129 3.181386e+07 775156.902 97.6% 230 3s
H 365 374 2.537530e+07 775156.902 96.9% 195 3s

623 651 1484472.12 29 330 2.5375e+07 775156.902 96.9% 193 5s
H 625 651 2.228999e+07 775156.902 96.5% 192 5s
H 635 651 1.700295e+07 775156.902 95.4% 192 5s
H 649 651 1.524965e+07 775156.902 94.9% 191 5s
H 1309 1146 5265663.3333 775156.902 85.3% 162 9s
H 1312 1144 5032846.8222 775156.902 84.6% 162 9s
H 1316 1123 4228610.0476 775156.902 81.7% 162 9s
H 1320 1107 3836260.5089 775156.902 79.8% 162 9s
H 1322 1101 3628016.2000 775156.902 78.6% 163 9s
H 1346 1101 3575756.5000 775156.902 78.3% 162 9s
1530 1212 782874.062 6 367 3575756.50 775636.708 78.3% 155 10s
2466 1926 1301398.44 29 410 3575756.50 775636.708 78.3% 144 17s
2483 1937 3018571.09 72 425 3575756.50 775686.218 78.3% 143 20s
2513 1960 779009.893 12 424 3575756.50 779009.893 78.2% 146 29s
2535 1983 2621748.16 16 340 3575756.50 780507.097 78.2% 148 30s

Default settingsConcurrentSettings=MipFocus1.prm,MipFocus3.prm

© 2020, Gurobi Optimization, LLC43

Distributed Algorithms

Distributed Architecture

• Multiple, ideally identical machines connected
by a network
• On premise
• Gurobi Instant Cloud

• Manager-worker paradigm
• Manager distributes work among workers
• Workers perform work and report results
• Manager collects results

© 2020, Gurobi Optimization, LLC44

Distributed MIP

• Use DistributedMIPJobs=n parameter
• Actually a combination of concurrent and parallel tree exploration

• Ramp up: concurrent for a limited number of nodes [ParaSCIP, 2010]
• Parallel tree exploration: continue with the ‘best’ concurrent result

• Dramatically higher node throughput…
• …when the search tree makes lots of independent nodes available

• Easy to try using Gurobi Instant Cloud

© 2020, Gurobi Optimization, LLC45

Model 1 Machine 16 Machines 32 Machines

danoint 1933s
912K nodes

196s
9.9X faster

128s
15.1X faster

Gurobi Version 9.0.3
Intel Xeon E3-1240 v3 CPUs

Distributed Tuning

• Automatic parameter tuning
• Use TuneJobs=n parameter for distributed parallel tuning
• Trivially parallel

• Explore different parameter settings in parallel

• Typical to get linear parallel speedups
• With 24 machines, a day becomes an hour

© 2020, Gurobi Optimization, LLC46

© 2020, Gurobi Optimization, LLC47

Other Metrics

Thread Control on a Shared Machine

• Imagine multiple optimization jobs share a single machine
• How many threads should each one use?

• Too few: leave cores idle
• Too many: multiple jobs fight over cores

© 2020, Gurobi Optimization, LLC48

Thread Control on a Shared Machine

• Instead of measuring completion time for one model, measure machine throughput
• Number of times model danoint can be solved in our hour
• Running 1, 2, 4, 8, 16 or 16 jobs simultaneously, using different per-job core counts
• 24-core Intel Xeon Gold 5118, 2.3GHz, 512GB DDR3 system

• No need to worry about matching thread count to core count

49 © 2020, Gurobi Optimization, LLC

Threads per job 1 Job 2 Jobs 4 Jobs 8 Jobs 16 Jobs

12 15.0 27.7 38.9 38.4 38.0

19 38.0 38.4

24 27.7 40.7 40.0 39.9 38.9

Tests run 2020-08-08

© 2020, Gurobi Optimization, LLC50

Other Architectures

Graphical Processing Unit (GPU) Computing

• Single-Instruction Multiple-Data (SIMD) Computing

© 2020, Gurobi Optimization, LLC51

Copyright 2020, NVIDIA Corporation

Quantum Computing

© 2020, Gurobi Optimization, LLC52

Quantum Computing

• Interesting future technology
• Potential to substantially speed up optimization tasks
• Currently still a science project

© 2020, Gurobi Optimization, LLC53

Conclusions

• Parallelism used throughout the Gurobi Optimizer
• LP (barrier and concurrent)
• MIP
• Distributed MIP
• Distributed tuning

• Significant performance improvements in most cases
• Not linear
• Problem dependent

• Continued focus area
• Parallelism continues to become more important

© 2020, Gurobi Optimization, LLC54

Thank You – Questions?

Your Next Steps

• Try Gurobi 9.0 Now!

• Get a 30-day commercial trial license of Gurobi at www.gurobi.com/free-trial

• Academic and research licenses are free!

• For questions about Gurobi pricing, please contact sales@gurobi.com or sales@gurobi.de

• A recording of this webinar, including the slides, will be available in roughly one week.

© 2020, Gurobi Optimization, LLC56

http://www.gurobi.com/free-trial
mailto:sales@gurobi.com
mailto:sales@gurobi.de

