
© 2024 Gurobi Optimization, LLC. All Rights Reserved | 1

Dr. Jue Xue

Technical Account Manager

April 9, 2024

Hidden Gems
Useful Gurobi Features you may not know

Outline

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 2

Performance
• Variable Start &

Hint Values
• Partition Heuristic

GitHub
• GRBlogtools
• Gurobi Machine Learning
• Gurobi’s Ill Conditioning

Explainer

Modeling
• Multiple Objectives
• Multiple Scenarios
• Multiple Solutions
• General Constraints
• Infeasibility AnalysisHidden Gems

Useful Gurobi Features you may not know

Hidden Gems: Modeling

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 3

© 2022 Gurobi Optimization, LLC. All Rights Reserved | 4

Multiple Objectives

Minimize Cost
&

Maximize Product
Durability

Minimize Shift Count
&

Maximize Worker
Satisfaction

Maximize Profit
&

Minimize Late Orders

Maximize Profit
&

Minimize Risk

• Real-world optimization problems often have multiple, competing objectives

How does Gurobi handle the trade-offs?

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 5

• Weighted: Optimize a weighted combination of the individual objectives

OBJ 1 OBJ 2 OBJ 3

OBJ 1

OBJ 2

OBJ 3

+ +

• Hierarchical (Lexicographical): Optimize each objective in a priority order given while
limiting the degradation of the higher-priority objectives

• Weighted + Hierarchical

Multiple Objectives API

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 6

• Python API

• LinExpr: Objective expressions
• index: Objective index (Used to set different parameters/query the solution per objective)
• priority: Objective priority (ObjNPriority attribute)
• weight: Objective weight (ObjNWeight attribute)
• abstol: Absolute tolerance used in calculating the allowable degradation (ObjNAbsTol

attribute)
• reltol: Relative tolerance used in calculating the allowable degradation (ObjNrelTol attribute)

Model.setObjectiveN(LinExpr, index, priority=0, weight=1,
abstol=1e-6, reltol=0, name="")

How is the degradation value calculated?

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 7

𝝐𝟏 = base_value + relaxed
• base_value = max(objbnd +|objval|*MIPGap, objbnd + MIPGapAbs, objval)
• relaxed = max(ObjNRelTol*|base_value|, ObjNAbsTol)

objbnd : best bound of objective OBJ1
objval : best solution value for objective OBJ1
MIPGap : relative MIP gap
MIPGapAbs : absolute MIP gap
ObjNRelTol: allowable relative degradation for OBJ1
ObjNAbsTol: allowable absolute degradation for OBJ1

OBJ 1

OBJ 2

Additional Constraint:
OBJ 1 <= 𝝐𝟏

Multiple Objectives Details

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 8

• A single objective sense for all objectives (ModelSense attribute)

• Objective expressions should be linear

• Choosing objective-specific parameters via multi-objective environments

• Faster performance from warm starts for hierarchical objectives

• Avoiding numerical issues with large objective coefficients
• Soft constraints with large penalty variables

0

2

4

6

8

10

12

14

16

18

0-0.5 0.5-1 1-10 10-1000 1000-10000 10000-1010010100-10200

Objective Coefficients Histogram

There are 45 coefficients in 2 distinct groups.
Is this a multi-objective case in hiding?

Multiple Scenarios

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 9

• In many real-world applications, the following may occur:
• The input data is not accurate
• The input data is not known in advance and can take multiple values in real time
• The input data is seasonal or periodic
• The input data has a range of possible values

• The Gurobi Optimizer includes scenario analysis features which are useful to understand the
sensitivity of the computed solution with respect to changes in the inputs:

• Linear objective function coefficients
• Variable lower and upper bounds
• Linear constraint right-hand side values

Base Model

Multiple Scenarios API

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 10

Base Model

Model.ScenarioNumber=0

The base model can be
any single-objective
model handled by Gurobi.

Change the linear objective
coefficients x.ScenNObj=c’

x.ScenNLB=l’
x.ScenNUB=u’

(Ax=b).ScenNRHS=b’

Change the
variable
bounds

Change the linear constraints
RHS

Model.ScenarioNumber=1

Model.ScenarioNumber=2

M
o
d
e
l
.
N
u
m
S
c
e
n
a
r
i
o
s
=
3

Model.ScenarioNumber=n

Query the
solution

Model.ScenNObjVal
Model.ScenNObjBound
x.ScenNX

Model.Optimize()

Combine all scenarios into a single
model via introducing binary
variables for each scenario

Multiple Scenarios (Tips & Tricks)

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 11

• The multiple scenarios API is restricted. For example, it is not possible to explicitly
• Add/remove variables or constraints
• Change the variable types
• Change the sense of constraints
• …

• However, we can circumvent some of the restrictions using useful tricks
• To remove a variable, set its bounds to zero
• To add a variable to a scenario, add it to the base model with bounds set to zero and then change

the bounds accordingly
• To remove a constraint, change its RHS values to GRB.INFINITY/-GRB.INFINITY
• To add a constraint to a scenario or change its sense, add it as a pair of inequalities to the base

model and change its RHS values accordingly

Multiple Solutions

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 12

• You may want to report several solutions, not just the optimal solution
• The model may lack implicit elements like preferences, or some aspects

of the objective may be difficult to quantify
• Demonstrate value by comparing alternatives to the optimal solution
• Gives a greater feeling of control
• Get feedback, may learn about missing model elements if an alternate

solution should have been the optimal one based on real-world knowledge

• How can you quickly find several feasible solutions?
• Define a Solution Pool and report multiple solutions automatically, and efficiently after a single run

• Note there are some subtleties and limitations. e.g., Continuous variables - multiple
equivalent solutions will not be reported per our definitions.

Solution Pool Setup

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 13

BehaviorParameter Settings

Stores all solutions found in the regular optimization.
No additional tree search performed.

PoolSearchMode = 0

Stores n-1 additional solutions to the optimal solution.
PoolSolutions Controls how many solutions to save.

PoolSearchMode = 1
PoolSolutions = n

Stores n-1 best additional solutions with a MIPGap less than x% in addition to the
optimal solution.
Requires exploring the tree search more than setting PoolSearchMode=1.

PoolSearchMode = 2
PoolSolutions = n
PoolGap = x

Controlled the number and quality of solutions via model parameters (documentation)

Limit how many solutions to collect
model.setParam(GRB.Param.PoolSolutions, 100)

Limit the search space by setting a gap for the worst possible solution that will be accepted
model.setParam(GRB.Param.PoolGap, 0.10)

do a systematic search for the k-best solutions
model.setParam(GRB.Param.PoolSearchMode, 2)

Gurobi API for Function Constraints

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 14

• Smart translation for periodic functions

• Using actual functions during presolve

• Bound strengthening in presolve for more efficient handling

model = gp.Model(”gen")
x = model.addVar(lb=0, ub=1, name="x")
y = model.addVar(name="y")
gc = model.addGenConstrExp(x, y)
model.setObjective(-2 * x + y)
model.optimize()

Example

• Polynomial
• Natural exponential
• Exponential
• Logarithm
• Logistic

• Power
• Sine
• Cosine
• Tangent

Supported Function
Constraints

General (Nonlinear)
Constraints

Simple General Constraints
such as min(), max(), abs(),

and(), or(), norm(), and
indicator()

Represented as MIP via
additional constraints and

variables

Function Constraints such as
polynomial(), exponential(),
power(), sine(), and many

more

Default: Approximated as MIP
using piece-wise linear (PWL)

approximation

Option 1: Specify breakpoints
(x, y) directly using Model.
addGenConstrPWL()

Option 2: Automatic
approximation using Gurobi

FuncPiece attribute
settings for Model.

addGenConstrXXX()

New with Version 11: Can be
handled with branch & cut with

outer linear approximations
(set FuncNonLinear=1)

General Constraints

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 15

• Gurobi supports two
types of general
constraints

• There are different
strategies for the
algorithmic
implementation…

• …but the API is consistent

Model.addGenConstrXXX()
XXX = Max, Min, Exp, Sin …

Options for Automatic PWL Translation

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 16

• Options
• FuncPieces, FuncPieceLength, FuncPieceError – there is a speed

vs. accuracy tradeoff when choosing piece length, number of pieces, or
maximum allowed error

• FuncPieceRatio - Choices for having the approximation as an
underestimate, overestimate, or somewhere in between of the actual
function

• Note
• Constraint Attributes: Applied to a specific function constraint
• Parameters: Applied to all function constraints

Function Constraints with Outer Approximations

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 17

• Available with Gurobi Version 11

• Derives hyperplane cuts to add to LP
relaxation.

• Adding more tangents at various points
improves the relaxation.

• Options
• FuncNonlinear = 1
(enable Non-Linear Constraint)

• FuncNonlinear = -1
(default, PWL approximation)

Note:
Branching on
𝑥 tightens the
relaxation
quickly!

Tighter initial
bounds will
speed up
performance

Infeasibility Analysis

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 18

Gurobi Optimizer version 10.0.1 build v10.0.1rc0
…
Optimize a model with 14 rows, 72 columns and 72 nonzeros
...
Iteration Objective Primal Inf. Dual Inf. Time

0 4.6400000e+02 4.400000e+01 0.000000e+00 0s

Solved in 1 iterations and 0.00 seconds (0.00 work units)
Infeasible model

workforce1.py example in Gurobi Python examples

• Why the model is infeasible?
• Compute an Irreducible Inconsistent

(Infeasible) System (IIS)

• What changes do I need to make to
recover feasibility?

• Compute the smallest perturbation
needed to recover feasibility

Irreducible Inconsistent System (IIS)

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 19

• Given an infeasible system of constraints
• Find a subset of constraints/variable bounds that

• It is infeasible

• Removing a single constraint/bound makes it
feasible

• IIS is minimal and not minimum

• Meant to be read and analyzed by a human
• The smaller, the better

• Computational complexity
• Cheap for LP and expensive for MIP

if model.Status == GRB.INFEASIBLE:
model.computeIIS()
model.write(”iis.ilp")

\ Model assignment_copy
\ LP format - for model browsing. Use MPS
format to capture full model detail.
Minimize

Subject To
Thu4: x[Cathy,Thu4] + x[Ed,Thu4] = 4
Bounds
-infinity <= x[Cathy,Thu4] <= 1
-infinity <= x[Ed,Thu4] <= 1
End

Options for IIS

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 20

• Method used to compute IIS
• IISMethod as a solver parameter

• User control to guide IIS computation
• Attributes to either include or exclude constraints/bounds from the IIS

• IISConstrForce, IISLBForce, IISUBForce, IISSOSForce, IISQConstrForce,
IISGenConstrForce

• Useful in identifying which changes made an already feasible model infeasible

Feasibility Relaxation

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 21

Infeasible
model

Feasibility
relaxation

• The feasibility relaxation model minimizes the
amount by which the violation of bounds and the
linear constraints of the original model is
minimized

• The violation is measured with respect to
• Number of violations (0-norm)
• Sum of the violations (1-norm)
• Sum of the squares of violations (2-norm)

• There are two different APIs:
• feasRelaxS(relaxobjtype, minrelax, vrelax, crelax)

• feasRelax(relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen)

Hidden Gems: Performance

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 22

Variable Start & Hint Values

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 23

• Take advantage of previous solutions & model insight to improve performance
• Knowledge of some variable values may be available from previous solves

• Example: Rolling horizon planning application
• Run 1: 6mo plan

• Run 2:
Redo plan starting in 2nd month

• Idea: Reduce solve times by specifying these values in the solver
• There are 2 options for how to provide this information

• Start values: to generate an initial solution. (Full or partial MIP starts can be used)

• Variable hints: to influence the MIP search

Jan Feb Mar Apr May Jun

Feb Mar Apr May Jun Jul
Previous solution becomes start or hint for first 5 months of next run

Variable Start & Hint Values – Comparison

Start Values
• Generate initial integer solution, which is

improved via MIP search

• Can specify partial solution, to be completed by

solver (typically don’t specify 0 values)

• Controlled via Start variable attribute (or load a

.mst MIP start file)

• Supports multiple start values via NumStart

model attribute and StartNumber parameter

Variable Hints
• Guide MIP search toward anticipated values

• Can specify hints for subset of integer variables, to

be used by solver (albeit with less guidance)

• Controlled via VarHintVal variable attribute

• Express your confidence for each hint via

VarHintPri variable attribute

• Supports only one hint per variable

© 2022 Gurobi Optimization, LLC. All Rights Reserved | 24

• Values from prior solves are most common
• Other candidates

• Preferences: Use the most efficient resource
• Heuristics: Apply use case insight
• Penalties: Avoid an expensive penalty

resource
• Symmetry: Pick one value as a start
• Only the objective changes
• Only new variables are added

• Values are specific to the model

Variable Start & Hint Values – Candidates

© 2022 Gurobi Optimization, LLC. All Rights Reserved | 25

Guess at the starting point: close the plant with
the highest fixed costs;
open all others

First open all plants
for p in plants:

open[p].Start = 1.0

Now close the plant with the highest fixed cost
print('Initial guess:’)
maxFixed = max(fixedCosts)
for p in plants:

if fixedCosts[p] == maxFixed:
open[p].Start = 0.0
print('Closing plant %s' % p)
break

Partition Heuristic

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 26

• Partition heuristic is typically useful if there is a natural grouping in the model
• Improve the scheduling of jobs assigned to the same machine
• Improve the allocation of warehouses to an open facility
• Improve the production plan over time periods for a specific product

• If variables are partitioned into different groups, a separate sub-MIP is solved for each
partition.

Partition Heuristic

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 27

• Improvement heuristics based on the idea of neighborhood search are used in Gurobi
• Start from the current incumbent
• Make a perturbation to the current incumbent
• Solve a new MIP

x1 x2 … xk xk+1 … xn

x1 x2 … xk xk+1 … xn

x1 x2 … xk xk+1 … xn

Current incumbent

Select a subset of variables to be fixed at the current incumbent

Solve a sub-MIP to optimize unfixed variables

• How to decide which variables to fix?
• Relaxed Induced Neighborhood Search

(RINS): Fix variables whose values agree
in both the current incumbent and the
current node relaxation

• Partitioning: User provides guidance via
variable grouping

Options for Partition Heuristic

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 28

• Partition, a variable attribute, to indicate which group the variable belongs to
• -1: Fix the variable in all sub-MIPs (if set for all variables, no partition heuristic)
• 0 : Unfix the variable in all sub-MIPs
• k : Unfix the variable in the kth sub-MIP and fix it in the rest

• PartitionPlace, a solver parameter controlling where the heuristic runs
• The parameter value is a bit vector, with each bit turning on/off the heuristic
• Example: PartitionPlace = 10 runs the heuristic at the start of the root node and at all nodes

Before the root
relaxation

Start of root cut
loop

End of root cut
loop

Nodes in the
branch-and-cut search

End of branch-and-
cut search

16 8 4 2 1

Hidden Gems: GitHub

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 29

Open-source Python package to analyze
multiple Gurobi log files

Easily compare results and logs from:

• Multiple model instances

• Different parameter sets

• Different computers

How it Works:
• Read log data into pandas

• Plot values using Plotly

• Convert log data to Excel spreadsheets

gurobi-logtools

© 2022 Gurobi Optimization, LLC. All Rights Reserved | 30

Details: https://github.com/Gurobi/gurobi-logtools

Machine Learning and Optimization

01
Training a
ML model

ML Algorithm
the lasso, best subset regression

Opt.
Algorithm
least squares

regression

02
Use the ML predictions
to define the Opt. Model

ML Model
demand forecast,
inventory levels

numerical
prediction

(ex: 5) Opt.
Model

facility
location

03 Gurobi-ML
Embed a ML model

inside an Opt. model

ML Model
sales as a
function of

price

Optimization
Model

revenue management

Gurobi-ML: an open-source Python package
Embed trained regression models* in an optimization model, solved by Gurobi

Open-source Python package to calculate
explanations of ill-conditioned basis matrices

Motivation:

• Find sources of numerical instability (not
infeasibility). I know Kappa is large, but then what?

How it Works:
• Root lp inspection for MIPs

• kappa_explain() (row or column based explanation)

• angle_explain() (pairs of rows or columns)

• And more!

Gurobi’s Ill Conditioning Explainer

© 2024 Gurobi Optimization, LLC. All Rights Reserved | 32

Details: https://github.com/Gurobi/gurobi-modelanalyzer

Open-source Python package to connect
pandas with gurobipy

Motivation:

• Make it easier to build optimization models
from DataFrames, and return solutions as
Panda objects.

How it works:
• Add variables and constraints

using DataFrame.gppd accessors or

gppd.add_vars(), gppd.add_constrs() functions

.

• Use gppd series accessor to extract solutions

gurobi-pandas

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 33

Details: https://github.com/Gurobi/gurobipy_pandas

import pandas as pd
import gurobipy as gp
from gurobipy import GRB
import gurobipy_pandas as gppd

projects = pd.read_csv(projects_csv, index_col="project")
teams = pd.read_csv(teams_csv, index_col="team")
project_vals = pd.read_csv(project_values_csv,index_col=["project", "team"])

model = gp.Model()
model.ModelSense = GRB.MAXIMIZE
x = gppd.add_vars(model, project_values, vtype=GRB.BINARY, obj="profit", name="x")

capacity_constraints = gppd.add_constrs(
model,
(

(projects["resource"] * x)
.groupby("team").sum()

),
GRB.LESS_EQUAL,
teams["capacity"],
name='capacity',

)

Summary

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 34

Modeling
• Multiple Objectives
• Multiple Scenarios
• Solution Pool
• General Constraints
• Infeasibility Analysis

Performance
• Variable Start & Hint Values
• Partition Heuristic

GitHub
• GRBlogtools
• Gurobi Machine Learning
• Gurobi’s Ill Conditioning

Explainer
• gurobi-pandas

Hidden Revealed Gems

There are still Gems to discover!
NoRel Heuristic, VarBranch Priorities, Callbacks, Distributed Optimization, Optimods, … and More

For more information: gurobi.com

Thank You

© 2024 Gurobi Optimization, LLC. All Rights Reserved

