Incorporate your Machine Learning Models into Optimization

Usage and model tuning

Zed Dean Technical Account Manager

Alison Cozad Gurobi Expert Team NA Manager

April 2023

gurobi-machinelearning Public

Insert trained predictors in Gurobi models

● Python 🟠 111 😵 22

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

Open Source, sponsored by Gurobi

Collaborate, Experiment, and Innovate with the Gurobi Team

Gurobi Machine Learning Package

Why, What, How Types of Model Errors/Residuals

Tuning in Machine Learning Package

Logistic regression with piece-wise approximations (PWA)

Decision Tree, Random Forest & Gradient boosting.

Neural Network

Final thoughts

github.com/Gurobi

Open Source Projects Sponsored by Gurobi

We aim to foster a collaborative community around Gurobi by openly developing various optimization projects and tools, making them more accessible and user-friendly.

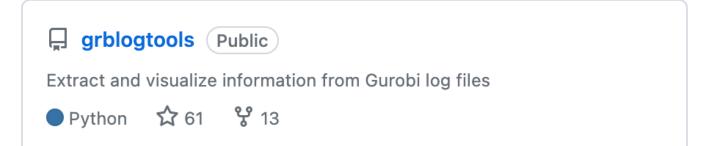
Our users can experiment with our innovative tools, providing **direct feedback to our developers** responsible for creating these packages.

💂 gurobi-machin	elearning Public			
Insert trained predicto	ors in Gurobi models			
● Python 🟠 111 😵 22				
•••••	••••••••••••••			

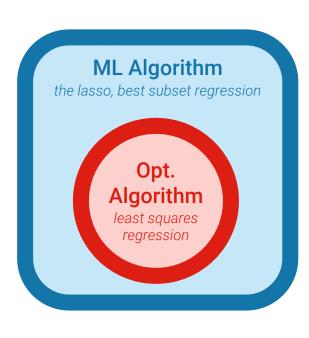
gurobipy-pandas Public

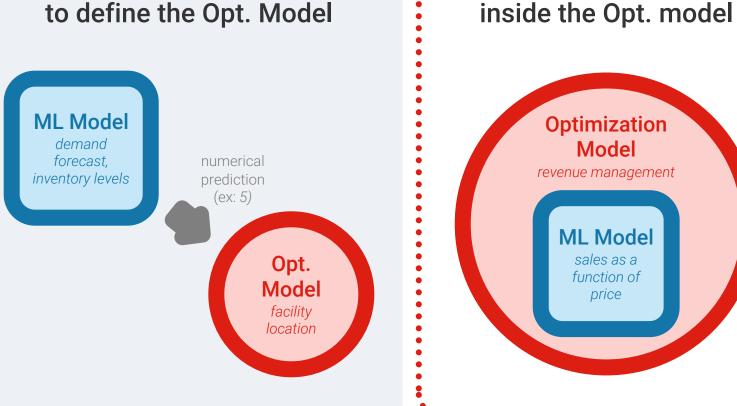
Convenience wrapper for building optimization models from pandas data

● Python 🟠 50 😵 13



Output GUROBIO O1 O2 O3 Training a Use the ML predictions Embed a ML model ML model Ot, Model Embed a ML model





© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

Agenda

Open Source, sponsored by Gurobi

Collaborate, Experiment, and Innovate with the Gurobi Team

Gurobi Machine Learning Package

Why, What, How Types of Model Errors/Residuals

Tuning in Machine Learning Package

Logistic regression with piece-wise approximations (PWA)

Decision Tree, Random Forest & Gradient boosting.

Neural Network

Final thoughts Optimization, LLC. Confidential, All Rights Reserved | 5

Our Goals

- Simplify the process of **importing a trained machine learning model** built with a popular ML package into an optimization model.
- Improve **algorithmic performance** to enable the optimization model to explore a sizable space of solutions that satisfy the variable relationships captured in the ML model.
- Make it easier for optimization models to mix explicit and implicit constraints.

Other similar packages:

- Janos (Bergman et. al, 2019)
- ReLU_MIP (Lueg et. al, 2021)
- OptiCL (Maragno et.al, 2021)
- OMLT (Ceccon et. al, 2022)

Regression Models Understood by Gurobi (and which has controllable errors)

- Linear/Logistic regression
- Decision trees
- Neural network with ReLU activation
- Random Forests
- Gradient Boosting trees
- Transformations:
 - Simple scaling of features
 - Polynomial features of degree 2
- Pipelines to combine them

- Dense layers
- ReLU layers
- Object Oriented, functional or sequential

O PyTorch

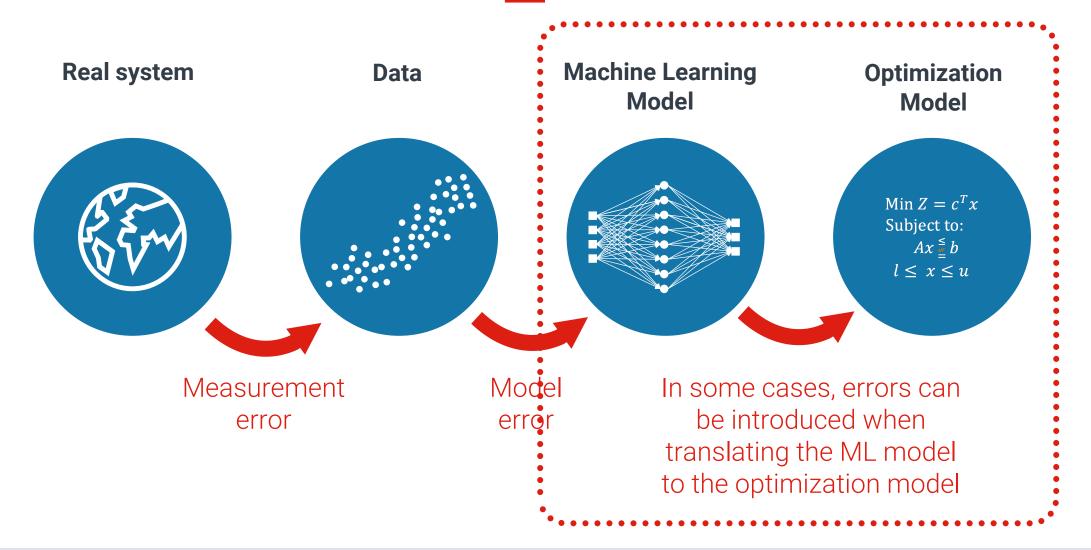
- Dense layers
- ReLU layers
- Only torch.nn.Sequential models

Generic Predictor Constraint

The package has four main functions:

- add_predictor_constr(gp_model, predictor, input_vars, output_vars=None, **kwargs)
- print_stats(abbrev=False, file=None)
- remove()
- get_error()

Types of errors between the real system SUROBI and the optimal solution



Source of Modeling Errors

In this session we will try to explain how to minimize the errors by using trained Machine Learning Predictors in Gurobi.

The source of the errors:

- Models for logistic regression use a **piecewise linear approximation** and can have approximation error (controlled by parameters).
- Models for decision tree, Random Forest and Gradient Boosting can also introduce small Modelling errors at **threshold values of node splitting** (can be controlled).
- Models for neural networks doesn't introduce error.

Link to the example

Agenda

Open Source, sponsored by Gurobi

Collaborate, Experiment, and Innovate with the Gurobi Team

Gurobi Machine Learning Package

Why, What, How Types of Model Errors/Residuals

Tuning in Machine Learning Package

Logistic regression with piece-wise approximations (PWA)

Decision Tree, Random Forest & Gradient boosting.

Neural Network

Final thoughts Optimization, LLC. Confidential, All Rights Reserved | 12

Motivational Example: Student Enrollment

- We show how to reproduce the model of **student enrollment** from [BHB+22] with Gurobi Machine Learning.
- This model was developed in the context of the development of <u>Janos</u>, a toolkit similar to Gurobi Machine Learning to integrate ML models and Mathematical Optimization.
- This example illustrates how to use the **logistic regression** and tune the **piecewise-linear approximation** of the logistic function.
- This example illustrates how to use **Gradient Boosting** and tune the **epsilon to minimize the error**.
- We also show how to deal with fixed features in the optimization model using pandas data frames.

The objective: The objective is to maximize of the enrolled students

The constraints:

Budget of 50000 Scholarship per student is max 2500

Useful Data form last year:

	StudentID	SAT	GPA	merit	enroll
1	1	1507	3.72	1.64	0
2	2	1532	3.93	0.52	0
3	3	1487	3.77	1.67	0
4	4	1259	3.05	1.21	1
5	5	1354	3.39	1.65	1
19996	19996	1139	3.03	1.21	1
19997	19997	1371	3.39	1.26	0
19998	19998	1424	3.72	0.85	0
19999	19999	1170	3.01	0.73	1
20000	20000	1389	3.57	0.55	0

- Problem Description
- Formulation & Mathematical Model
- Implementation
- Feature Discussion

Using the Data from last year we could build a logistic function (using scikit) that predict the possibility of enrollment if a student was giving certain merit (scholarship).

 $Probability_i = logistic function(Merit_i, SAT_i, GPA_i),$

	StudentID	SAT	GPA	merit	enroll
1	1	1507	3.72	1.64	0
2	2	1532	3.93	0.52	0
3	3	1487	3.77	1.67	0
4	4	1259	3.05	1.21	1
5	5	1354	3.39	1.65	1
19996	19996	1139	3.03	1.21	1
19997	19997	1371	3.39	1.26	0
19998	19998	1424	3.72	0.85	0
19999	19999	1170	3.01	0.73	1
20000	20000	1389	3.57	0.55	0

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation
- Feature Discussion

$$egin{aligned} &\max \sum_{i=1} Probability_i \ & ext{subject to:} \ Probability_i &= logistic function(Merit_i, SAT_i, GPA_i) \quad i=1,\ldots,n, \ &\sum_{i=1} Merit_i \leq 50000, \end{aligned}$$

 $0 \leq Merit_i \leq 2500.$

Variables:

- Probability
- Merit

Probability is a predictor variable.

Merit is an optimization decision variable that was embedded into the logistic function.

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation
- Feature Discussion

The ML regressor

$$y_i = g(x_i, SAT_i, GPA_i),$$

The full model then reads:

 $\max \sum_{i=1}^{n} y_i$ subject to: $\sum_{i=1}^{n} x_i \le 0.2 * n,$ $y_i = g(x_i, SAT_i, GPA_i) \qquad i = 1, \dots, n,$ $0 \le x \le 2.5.$

Student Enrolment

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation
- Feature Discussion

```
# classify our features between the ones that are
fixed and the ones that will be
# part of the optimization problem
features = ["merit", "SAT", "GPA"]
target = "enroll"
```

```
# Run our regression
scaler = StandardScaler()
regression = LogisticRegression(random_state=1)
pipe = make_pipeline(scaler, regression)
pipe.fit(X=historical_data.loc[:, features],
y=historical_data.loc[:, target])
```

►	Pipeline			
	▶ StandardScaler			
	LogisticRegression			

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (github.com)
- Feature Discussion

```
pred_constr = add_predictor_constr(
    m, pipe, studentsdata, y,
output_type="probability_1"
)
```

```
pred_constr.print_stats()
```

Model for pipe1: 12000 variables 8000 constraints 2000 general constraints Input has shape (2000, 3) Output has shape (2000, 1)

Pipeline has 2 steps:

Step	Output Shape	Variables	 Constraints		
			Linear	Quadratic	General
std_scaler1	(2000, 3)	10000	6000	e0	0
log_reg1	(2000, 1)	2000	2000	0	2000

Student Enrolment

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (<u>github.com</u>)
- Feature Discussion

print(

"Maximum error in approximating the regression
{:.6}".format(
 np.max(pred_constr.get_error())
)
)

Maximum error in approximating the regression 0.00715885

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (github.com)
- Feature Discussion

```
pred constr.remove()
pwl_attributes = {
    "FuncPieces": -1,
    "FuncPieceLength": 0.01,
    "FuncPieceError": 1e-5,
    "FuncPieceRatio": -1.0,
pred constr = add predictor constr(
    m, pipe, studentsdata, y,
output type="probability 1",
pwl_attributes=pwl_attributes
m.optimize()
print(
    "Maximum error in approximating the regression
{:.6}".format(
        np.max(pred constr.get error())
      Maximum error in approximating the regression
      4.47141e-06
```


Student Enrolment

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (github.com)
- Feature Discussion

```
# classify our features between the ones that are
fixed and the ones that will be
# part of the optimization problem
features = ["merit", "SAT", "GPA"]
target = "enroll"
# Run our regression
regression = DecisionTreeRegressor(max_depth=10,
max_leaf_nodes=50, random_state=1)
```

```
regression.fit(X=historical_data.loc[:, features],
y=historical_data.loc[:, target])
```

DecisionTreeRegressor
 DecisionTreeRegressor(max_depth=10, max_leaf_nodes=50, random_state=1)

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (<u>github.com</u>)
- Feature Discussion

```
# classify our features between the ones that are
fixed and the ones that will be
# part of the optimization problem
features = ["merit", "SAT", "GPA"]
target = "enroll"
# Run our regression
regression = DecisionTreeRegressor(max_depth=10,
max_leaf_nodes=50, random_state=1)
```

```
regression.fit(X=historical_data.loc[:, features],
y=historical_data.loc[:, target])
```

DecisionTreeRegressor
 DecisionTreeRegressor(max_depth=10, max_leaf_nodes=50, random_state=1)

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (<u>github.com</u>)
- Feature Discussion

Add Trained constraint

pred_constr = add_predictor_constr(m, regression, studentsdata, y)

print(

```
"Error in approximating the regression
{:.6}".format(
         np.max(np.abs(pred_constr.get_error()))
      )
)
```

Error in approximating the regression 1.0

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (<u>github.com</u>)
- Feature Discussion

```
# Remove pred_constr
pred_constr.remove()
```

```
# Add new constraint setting epsilon to 1e-5
pred_constr = add_predictor_constr(m, regression,
studentsdata, y, epsilon=1e-5)
```

```
m.optimize()
print(
    "Error in approximating the regression
{:.6}".format(
        np.max(np.abs(pred_constr.get_error()))
        )
)
```

Error in approximating the regression 5.54244e-16

- Problem Description
 - The logistic function
- Formulation & Mathematical Model
- Implementation: notebook examples
 - <u>gurobi-</u> <u>machinelearning/student_admission.ipynb at</u> <u>main · Gurobi/gurobi-machinelearning</u> (github.com)
 - <u>gurobi-machinelearning/Decision Tree.ipynb</u> <u>at main · Gurobi/gurobi-machinelearning</u> (github.com)
- Feature Discussion

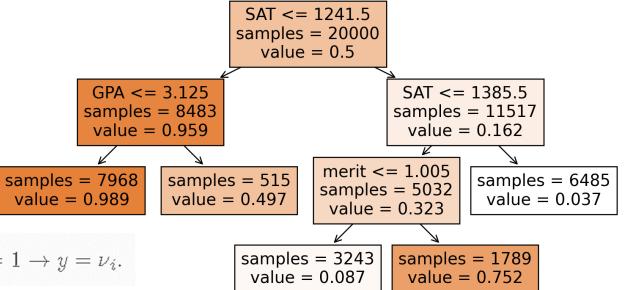
Tunning Decision Tree: Decision Tree Regression and node splitting.

- We add one binary decision variable for each node of the tree (and each input vector).
- We differentiate between splitting nodes and leafs of the tree
- By definition, if a node is on the decision path, then we proceed.
- We use an indicator constraint to model that if it moves is on the decision path, the output value of $\delta_i = 1 \rightarrow y = \nu_i$. the output is fixed to with an indicator constraint.

This all cause a minimal error.

SAT <= 1241.5 samples = 20000value = 0.5GPA <= 3.125 samples = 8483value = 0.959samples = 7968samples = 515

$$\delta_j = 1 \to x_{s_i} \le \theta_i, \\ \delta_k = 1 \to x_{s_i} > \theta_i + \epsilon.$$



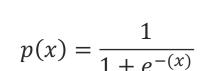
Decision Tree Regression

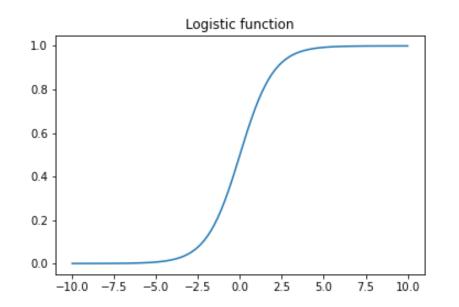
- It only corresponds to a small perturbation in the values of the input variables
- The default value for � is 0.
- Adding small epslison value could easily address the error
- pred_constr = add_predictor_constr(m, regression, studentsdata, y, epsilon=1e-5)

<u>Mixed Integer Formulations – Gurobi Machine Learning documentation (gurobi-machinelearning.readthedocs.io)</u>

Tunning Logistic Regression : Logistic Regression and Piecewise-Linear Approximation PWA

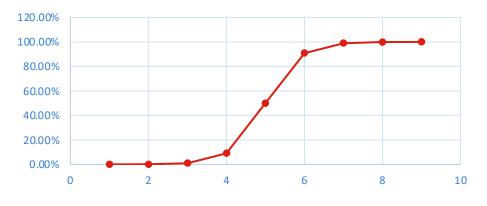
- Function constraints in Gurobi
 - Allow to state y = f(x)
 - *f* is a predefined function
 - *y* and *x* are one-dimensional variables
 - Gurobi automatically performs a piecewise-linear approximation of *f* in the domain of *x*.
- Added logistic function to our set of predefined f.
- Why it is important
- Probability = Odds / (1 + Odds)
- # y = 1 / (1 + exp(-x))
- gc = model.addGenConstrLogistic(x, y)





Why it is important ? : Making probability a linear Equation

	Delta Log			
Log Odds	<mark>Odds</mark>	Odds on Success	Prob of Success	Delta Probability
-9.210		0.0001	0.01%	#N/A
-6.908	<mark>2.303</mark>	0.001	0.10%	0.09%
-4.605	<mark>2.303</mark>	0.01	0.99%	0.89%
-2.303	<mark>2.303</mark>	0.1	9.09%	8.10%
0.000	<mark>2.303</mark>	1	50.00%	40.91%
2.303	<mark>2.303</mark>	10	90.91%	40.91%
4.605	<mark>2.303</mark>	100	99.01%	8.10%
6.908	<mark>2.303</mark>	1000	99.90%	0.89%
9.210	<mark>2.303</mark>	10000	99.99%	0.09%



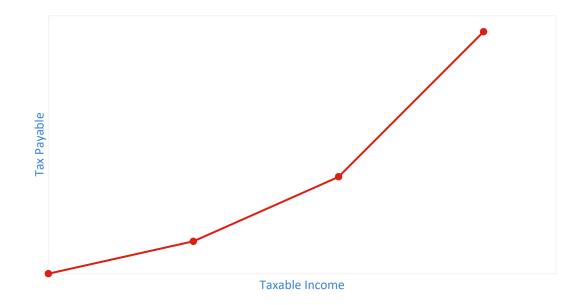
How Gurobi PWA simplifies model development UROBI process

Piecewise Linear Constraint – Without Gurobi

They consistently use piecewise linear constraints in our model.

• One such example is to calculate the annual tax payable given a taxable income.

Annual Federal Tax



Source: Optimizing Your Financial Future: A Goals-Based Approach to Financial Planning - Gurobi Optimization

30

How Gurobi PWA simplifies model developm

Piecewise Linear Constraint – Without Gurobi

• $b_1 + b_2 + b_3 = 1$

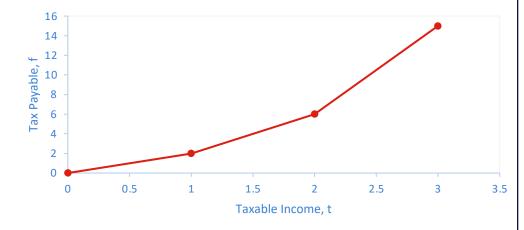
• $0 \le s_i \le b_i$ for i = 1, 2, 3

• $t = t_1b_1 + (t_2 - t_1)s_1 + t_2b_2 + (t_3 - t_2)s_2 + t_3b_3 + (t_4 - t_3)s_3$ • $t = 0 \cdot b_1 + (1 - 0)s_1 + 1b_2 + (2 - 1)s_2 + 2b_3 + (3 - 2)s_3$ • $t = s_1 + b_2 + s_2 + 2b_3 + s_3$

• $f = f_1b_1 + (f_2 - f_1)s_1 + f_2b_2 + (f_3 - f_2)s_2 + f_3b_3 + (f_4 - f_3)s_3$ • $f = 0 \cdot b_1 + (2 - 0)s_1 + 2b_2 + (6 - 2)s_2 + 6b_3 + (15 - 6)s_3$ • $f = 2s_1 + 2b_2 + 4s_2 + 6b_3 + 9s_3$

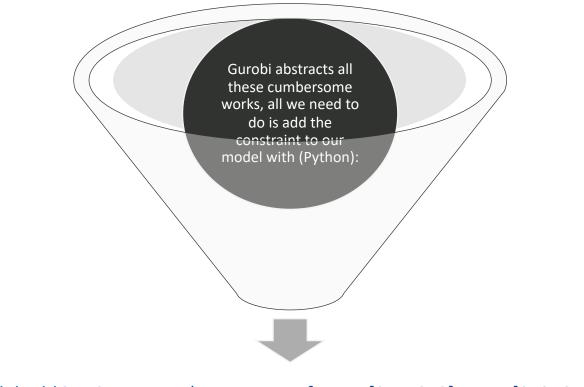
Let t_i be the taxable income, and f_i be the tax payable.
Let b₁, b₂, ..., b_{n-1} be binary variables such that b_i ∈ {0, 1}
Let s₁, s₂, ..., s_{n-1} be segment variables such that s_i ∈ R

$$t_i = [0, 1, 2, 3]$$
 and $f_i = [0, 2, 6, 15]$



How Gurobi PWA simplifies model development UROBI process

Piecewise Linear Constraint – With Gurobi



model.addGenConstrPWL(xvar=t, yvar=f, xpts=[0, 1, 2, 3], ypts=[0, 2, 6, 15])

32

Parameters: Is it easy to handle?

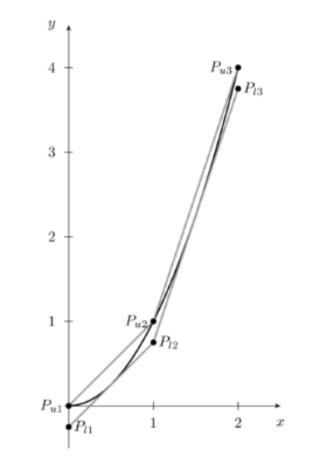
The details of the approximation are controlled using the following four attributes (or using the parameters with the same names):

FuncPieces, number of pieces.

<u>FuncPiecesLength</u>, desired width of each piece.

<u>FuncPieceError</u>, equal to the maximum absolute approximation you are willing to tolerate, **Gurobi will do pieces accordingly**.

For details, check the <u>General Constraint</u> discussion



Tunning the student enrolment model

	Error Before Tuning	Error After Tunning
Logistic Regression	0.00715885	4.47141e-06
Decision Tree	1.0	5.54244e-16

Tunning Neural network

- Models for neural networks don't introduce errors.
- However, get_error() will still report errors if the model suffer numerical issues , Guidelines for Numerical Issues - Gurobi Optimization

FAQ- Discussions

• Which ML models would be more useful to integrate with optimization

Final thoughts

On the Gurobi ML package

Benchmark all ML regressors before making a final decision which one to use.

Gurobi Machine Learning Package may generate minimal controllable errors that could be handled easily

Logistic regression error could be handled by adjusting PWA (piecewise-linear approximation) parameters

github.com/Gurobi

Decision Tree, Random Forest and Gradient Boosting errors can be handled by changing an epsilon default value from 0 to very small value

Link to the example

Thank You

For more information: gurobi.com

Zed Dean Technical Account Manager dean@gurobi.com Alison Cozad Gurobi Expert Team NA Manager

cozad@gurobi.com

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved