Gurobi 9.1 Performance

The World's Fastest Solver

Zonghao Gu December 2020

Performance Improvements

• LP improvements

- Dual: 29% faster overall, 66% faster for > 100s models
- Primal: 17% faster overall, 37% faster for > 100s models
- Barrier: 15% faster overall, 34% faster for > 100s models

MIP improvements

- MILP: 5% faster overall, 10% faster for > 100s models
- MIQP (convex): 6% faster overall, 20% faster for > 100s models
- MIQCP (convex): 13% faster overall, 57% faster for > 100s models
- Bilinear or nonconvex MIQCP improvements
 - 4.1x overall, 9.6x for > 100s models
- IIS improvements
 - 2.6x overall, 5.7x for >100s models

LP Performance

© 2020, Gurobi Optimization, LLC

LP Improvements

- Presolve
 - Improved a presolve reduction
 - Improved dependent row reduction
- Better decision to solve dual formulation
 - Use machine learning to decide
 - Including deciding which method to use, primal or dual
- Weak symmetry improvement

LP Improvements, Simplex

- Dual pricing strategy
 - Improve handling among devex, different types of steepest edge pricing
- Scaling, especially objective scaling
- Perturbation
- LU factorization
 - 2x2 block pivoting
 - Improvement of sparse vs dense treatment
 - Pivoting candidate selection

LP Improvements, Barrier

Crossover

- Improved ratio test for primal pushes
- Better numeric handling
 - Initial crossover basis
 - Etc.
- Barrier parallel improvement
 - Especially for machines with more than four physical cores

Approaches to Solve Dual Formulation

• Our approach

- Use the original model to formulate the dual model
- Apply presolve on the dual model
- Solve the presolved model

Alternative approach

- Apply presolve to the original model to get the presolved model
- Formulate the dual model based on the presolved model
- Solve the dual of the presolved model

Decision to Solve the Dual Formulation

• Estimate the size of the dual better

• Exclude rows and columns in the dual formulation that will obviously be removed by presolve

Use machine learning

- Find important factors to decide whether to solve the dual formulation
 - We fed the data to scikit-learn it identified key inputs
 - The aspect ratio, # columns divided by # rows
 - Similar to what we were doing before
- Decide which method, primal or dual, to solve dual formulation
 - ML gave us a nice formula to decide
 - Mostly expected or understandable, but not all
 - We manually adjusted a bit

Weak Symmetry for LP (aka LP Folding)

- Example
 - $3w + 3x + 3y + 3z \le 11$
 - $3w + 3x + 2y + 4z \le 11$
 - $3w + 3x + 4y + 2z \le 11$
 - *x*, *y* don't look symmetric, but
 - Sum of coefficients = 9 for each column
 - Sum of coefficients = 12 for each row

• The conditions for weak symmetry

- Divide the rows and columns into classes
- The sum of the coefficients in a row is equal for each row in the same class
- The sum of the coefficients in a column is equal for each column in the same class
- Objective coefficients and bounds are the same for the variables in the same class
- Rhs and senses are the same for the rows in the same class

Property of LP Weak Symmetry

- Given a solution x^*
 - Let $x'_j = \frac{1}{n} \sum_{i \in C} x^*_i$, $|C| = n, \forall j \in C$, for any variable class C
 - Easy to show x' is also a feasible solution with the same objective value
 - We can let all the variables in the same class equal
 - All the rows in the same class will be the identical

Symmetry reduced model

- Combine all the variables in a variable class together
 - by adding up coefficients in the rows
- Keep only one row for each row class

References

- Several reports with computational results
 - Many LP solvers have the feature
- We have it since Gurobi 7.5
- The key part is to convert nonbasic symmetric solution to basic one

Weak Symmetry Improvement

Detection

- Catch more general case, including the example in slide 9
- Speedup: handle sparsity and hashing better

Converting to basic solution

- Simplex
 - 9.1 uses crossover to convert nonbasic solution to basic one
 - Initial crash basis construction
 - Check many different numeric bad signs, restart if bad enough
 - Heavily tested and refined
 - 9.0 uses the superbasic code to convert
 - Only used for corner cases
- Barrier
 - 9.1 does crossover twice
 - First crossover on the smaller model is cheap
 - Second crossover with clean solution is numerically more stable
 - 9.0 does crossover once
 - Uncrush the barrier solution (not very clean) to the solution for the large model
 - Crossover with not clean solution on the large model

MIP Performance

© 2020, Gurobi Optimization, LLC

© 2020, Gurobi Optimization, LLC

Heuristics

New heuristics

- NoRel heuristic
- Some new variants of RINS

Improvements of existing heuristics

- Adjustment on SubMIP heuristic setting
- Adjustment on Improvement heuristic

Performance

- Improved MIP performance (optimality) by 1% to 2% overall
- Greatly improved performance for finding better solutions

Results for Finding Better solutions

• Test set

- All MIPLIB 2017 open problems: 245 models
- Runs
 - One hour run with 9.0 default, 9.1 default and 9.1 NoRel heuristic

• Winning measure:

- Solution is at least 1% better in terms of the objective value
 - If one run doesn't find any feasible solution in an hour, then the run finding a feasible solution is considered as winner

• 9.0 default vs 9.1 default

- 85 models with the solution difference by more than 1%
 - 16 wins for 9.0 vs 69 wins for 9.1
- 9.1 default vs 9.1 NoRel heuristic
 - 119 models with the solution difference by more than 1%
 - 29 wins for 9.1 vs 90 wins for 9.1 NoRel

Outer Approximation, Tangent Cut for MIQCP

- Outer approximation method to solve MIQCP
 - Solve LP relaxation
 - Add tangent cuts for quadratic constraints to LP relaxation
- Forms of quadratic constraints
 - Standard form, SOC (second order cone)
 - $\sum x_i^2 \le y^2$
 - It often needs to add new variables and to do L'L factorization
 - General form
 - $\sum q_{ij} x_i x_j + \sum a_j x_j \le b$
 - Input
 - General form, which covers SOC
 - Internal
 - Controlled by parameter PreMIQCPForm
 - -1 auto
 - 0 general form
 - 1 SOC
 - 2 disaggregated SOC

Tangent Cut for Quadratic Constraint

- Many options for cutting off LP relaxation solution x^{*}
 - Which tangent plane is best?
 - Best = maximum violation?
 - Best = quick separation?

Tangent Cut for SOC

- For given relaxation solution (x^*, y^*) with $\sum x_i^{*2} > y^{*2}$
 - i.e. (x^*, y^*) violates $\sum x_i^2 \le y^2$

• Let
$$y' = \sqrt{\sum x_i^{*2}}$$
 i.e. find a point (x^*, y') on SOC surface

- Use point (x^*, y') to compute the tangent plane
 - It cuts off (x^*, y^*)
 - The distance to (x*, y*) is maximum among all the tangent planes cutting off (x*, y*)

Tangent Cut for Quadratic Constraints in General Form

- How to find a point on surface
 - For given x^* with

 $\sum q_{ij} x_i^* x_j^* + \sum a_j x_j^* > b$

- It isn't easy to find a point on surface with the tangent plane cutting off x*
- There are many ways to find such a point, example $x^2 \le y$
 - Violated point $P(x^*, y^*)$
 - Keep y* unchanged to project to the surface, tangent cut T₁ with distance d₁
 - Keep x* unchanged to project to the surface, tangent cut T₂ with distance d₂
 - Which tangent plane is better?

Finding Tangent Cut with Maximum Distance

- Our iterative approach
 - Given a violated point (x^*, y^*)
 - Find a reasonably good point P₁ on surface, whose tangent plane cuts off (x*, y*), call tangent plane T₁
 - Project (x^*, y^*) to T₁ and extend it to P₂, then generate tangent plane T₂
 - Project (x^*, y^*) to $T_2 \dots$
 - Until P_n is very close to the projection of (x*, y*) to T_{n-1}
 - Use P_n to generate the tangent cut T_n

Performance Impact of Q Tangent Cut Improvement

- Internal convex MIQCP set
 - 3.3% overall, 10% for > 100s models
- Internal nonconvex MIQCP set
 - 1% overall

Gurobi 9.1 – Performance Summary

• Performance improvements compared to Gurobi 9.0

Algorithm	Overall speed-up	On >100sec models
Primal simplex	17%	37%
Dual simplex	29%	66%
Barrier	15%	34%
MILP	5%	10%
Convex MIQP	6%	20%
Convex MIQCP	13%	57%
Non-convex MIQCP	4.1x	9.6x
IIS detection	2.6x	5.7x