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Performance Improvements

• LP improvements
• Dual: 29% faster overall, 66% faster for > 100s models
• Primal: 17% faster overall, 37% faster for > 100s models
• Barrier: 15% faster overall, 34% faster for > 100s models

• MIP improvements
• MILP: 5% faster overall, 10% faster for > 100s models
• MIQP (convex): 6% faster overall, 20% faster for > 100s models
• MIQCP (convex): 13% faster overall, 57% faster for > 100s models

• Bilinear or nonconvex MIQCP improvements
• 4.1x overall, 9.6x for > 100s models

• IIS improvements
• 2.6x overall, 5.7x for >100s models
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LP Improvements

• Presolve
• Improved a presolve reduction
• Improved dependent row reduction

• Better decision to solve dual formulation
• Use machine learning to decide
• Including deciding which method to use, primal or dual

• Weak symmetry improvement
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LP Improvements, Simplex

• Dual pricing strategy
• Improve handling among devex, different types of steepest edge pricing

• Scaling, especially objective scaling
• Perturbation
• LU factorization
• 2x2 block pivoting
• Improvement of sparse vs dense treatment
• Pivoting candidate selection
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LP Improvements, Barrier

• Crossover
• Improved ratio test for primal pushes
• Better numeric handling

• Initial crossover basis
• Etc.

• Barrier parallel improvement
• Especially for machines with more than four physical cores
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Approaches to Solve Dual Formulation

• Our approach
• Use the original model to formulate the dual model
• Apply presolve on the dual model
• Solve the presolved model

• Alternative approach
• Apply presolve to the original model to get the presolved model
• Formulate the dual model based on the presolved model
• Solve the dual of the presolved model
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Decision to Solve the Dual Formulation

• Estimate the size of the dual better
• Exclude rows and columns in the dual formulation that will obviously be 

removed by presolve

• Use machine learning
• Find important factors to decide whether to solve the dual formulation

• We fed the data to scikit-learn – it identified key inputs
• The aspect ratio,  # columns divided by # rows
• Similar to what we were doing before

• Decide which method, primal or dual, to solve dual formulation
• ML gave us a nice formula to decide

• Mostly expected or understandable, but not all
• We manually adjusted a bit
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Weak Symmetry for LP (aka LP Folding)

• Example
• 3𝑤 + 3𝑥 + 3𝑦 + 3𝑧 ≤ 11
• 3𝑤 + 3𝑥 + 2𝑦 + 4𝑧 ≤ 11
• 3𝑤 + 3𝑥 + 4𝑦 + 2𝑧 ≤ 11

• 𝑥, 𝑦 don’t look symmetric, but
• Sum of coefficients = 9 for each column 
• Sum of coefficients = 12 for each row 

• The conditions for weak symmetry
• Divide the rows and columns into classes
• The sum of the coefficients in a row is equal for each row in the same class
• The sum of the coefficients in a column is equal for each column in the same class
• Objective coefficients and bounds are the same for the variables in the same class
• Rhs and senses are the same for the rows in the same class
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Property of LP Weak Symmetry
• Given a solution 𝑥∗

• Let 𝑥!" =
#
$
∑%∈' 𝑥%∗, 𝐶 = 𝑛, ∀𝑗 ∈ 𝐶, for any variable class 𝐶

• Easy to show 𝑥" is also a feasible solution with the same objective value
• We can let all the variables in the same class equal
• All the rows in the same class will be the identical 

• Symmetry reduced model
• Combine all the variables in a variable class together 

• by adding up coefficients in the rows
• Keep only one row for each row class

• References
• Several reports with computational results

• Many LP solvers have the feature
• We have it since Gurobi 7.5 
• The key part is to convert nonbasic symmetric solution to basic one 
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Weak Symmetry Improvement
• Detection

• Catch more general case, including the example in slide 9
• Speedup: handle sparsity and hashing better

• Converting to basic solution
• Simplex

• 9.1 uses crossover to convert nonbasic solution to basic one
• Initial crash basis construction
• Check many different numeric bad signs, restart if bad enough
• Heavily tested and refined

• 9.0 uses the superbasic code to convert
• Only used for corner cases

• Barrier
• 9.1 does crossover twice

• First crossover on the smaller model is cheap
• Second crossover with clean solution is numerically more stable

• 9.0 does crossover once
• Uncrush the barrier solution (not very clean) to the solution for the large model
• Crossover with not clean solution on the large model

© 2020, Gurobi Optimization, LLC11



© 2020, Gurobi Optimization, LLC

MIP Performance

12



Heuristics

• New heuristics
• NoRel heuristic
• Some new variants of RINS

• Improvements of existing heuristics
• Adjustment on SubMIP heuristic setting
• Adjustment on Improvement heuristic

• Performance
• Improved MIP performance (optimality) by 1% to 2% overall
• Greatly improved performance for finding better solutions
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Results for Finding Better solutions
• Test set

• All MIPLIB 2017 open problems: 245 models
• Runs

• One hour run with 9.0 default, 9.1 default and 9.1 NoRel heuristic
• Winning measure:

• Solution is at least 1% better in terms of the objective value
• If one run doesn’t find any feasible solution in an hour, then the run finding a feasible solution is 

considered as winner

• 9.0 default vs 9.1 default
• 85 models with the solution difference by more than 1%

• 16 wins for 9.0 vs 69 wins for 9.1

• 9.1 default vs 9.1 NoRel heuristic
• 119 models with the solution difference by more than 1% 

• 29 wins for 9.1 vs 90 wins for 9.1 NoRel
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Outer Approximation, Tangent Cut for 
MIQCP
• Outer approximation method to solve MIQCP

• Solve LP relaxation
• Add tangent cuts for quadratic constraints to LP relaxation

• Forms of quadratic constraints
• Standard form, SOC (second order cone)

• ∑𝑥!" ≤ 𝑦"

• It often needs to add new variables and to do L’L factorization
• General form 

• ∑𝑞!# 𝑥! 𝑥# + ∑𝑎# 𝑥# ≤ 𝑏
• Input

• General form, which covers SOC
• Internal

• Controlled by parameter PreMIQCPForm
• -1 auto 
• 0 general form
• 1 SOC
• 2 disaggregated SOC
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Tangent Cut for Quadratic Constraint

• Many options for cutting off LP relaxation solution 𝑥∗
• Which tangent plane is best?

• Best = maximum violation?
• Best = quick separation?
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Tangent Cut for SOC

• For given relaxation solution 𝑥∗, 𝑦∗ with ∑𝑥4∗5 > 𝑦∗5

• i.e. 𝑥∗, 𝑦∗ violates ∑𝑥"# ≤ 𝑦#

• Let y6 = ∑𝑥4∗5 i.e. find a point 𝑥∗, 𝑦6 on SOC surface

• Use point 𝑥∗, 𝑦6 to compute the tangent plane
• It cuts off 𝑥∗, 𝑦∗

• The distance to 𝑥∗, 𝑦∗ is maximum among all the tangent planes cutting 
off 𝑥∗, 𝑦∗
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Tangent Cut for Quadratic Constraints in 
General Form
• How to find a point on surface

• For given 𝑥∗ with 
∑𝑞*+ 𝑥*∗𝑥+∗ + ∑𝑎+ 𝑥+∗ > 𝑏

• It isn’t easy to find a point on surface 
with the tangent plane cutting off 𝑥∗

• There are many ways to find such a 
point, example 𝑥, ≤ 𝑦
• Violated point P 𝑥∗, 𝑦∗

• Keep 𝑦∗ unchanged to project to the 
surface, tangent cut T1 with distance d1

• Keep 𝑥∗ unchanged to project to the 
surface, tangent cut T2 with distance d2

• Which tangent plane is better?
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Finding Tangent Cut with Maximum 
Distance
• Our iterative approach
• Given a violated point 𝑥∗, 𝑦∗

• Find a reasonably good point P1 on 
surface, whose tangent plane cuts 
off 𝑥∗, 𝑦∗ , call tangent plane T1

• Project 𝑥∗, 𝑦∗ to T1 and extend it to 
P2, then generate tangent plane T2

• Project 𝑥∗, 𝑦∗ to T2 …
• Until Pn is very close to the 

projection of 𝑥∗, 𝑦∗ to Tn-1

• Use Pn to generate the tangent cut Tn
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Performance Impact of Q Tangent Cut 
Improvement
• Internal convex MIQCP set
• 3.3% overall, 10% for > 100s models

• Internal nonconvex MIQCP set
• 1% overall
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Gurobi 9.1 – Performance Summary

• Performance improvements compared to Gurobi 9.0
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Algorithm Overall speed-up On >100sec models

Primal simplex 17% 37%

Dual  simplex 29% 66%

Barrier 15% 34%

MILP 5% 10%

Convex MIQP 6% 20%

Convex MIQCP 13% 57%

Non-convex MIQCP 4.1x 9.6x

IIS detection 2.6x 5.7x


