What's New in Gurobi 9.0

Webinar

The World's Fastest Solver

Tobias Achterberg 17/18 December 2019

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

LP Performance

Default: 7% faster

• Concurrent LP on 4 threads

Simplex: 5% faster (primal), no performance change (dual)

- Improved linear system solving (Ftran/Btran)
- Improved numerics for warm-start and corner cases

Barrier: 7% faster

- Crossover: improved numerics
- Support for AVX-512, 40% boost on models with expensive factorization
 - yields another 4% overall improvement on AVX-512 systems

MIP Performance

MILP: 18% faster (26% faster on models that take >100 seconds)

- Cuts:
 - new RLT cuts
 - new BQP cuts
 - new RelaxLift cuts
 - second type of "SubMIP" cuts
 - use LP to find another aggregation for MIR cut separator
 - · randomize aggregation order in MIR cut separator
 - try more scaling factors in MIR cut separator
 - more aggressive cover cut separation
 - occasionally separate "close cuts"
 - tuned cut loop abort criteria for main and parallel cut loops
 - improved dual bound updates from parallel root cut loops
 - improved cut selection
 - improved performance of zero-half and mod-k cut separators
 - Iimit effort in GUB cover and network cut separation procedures
 - · limit effort in some very expensive cut separation procedure
 - fixed a performance issue in symmetry cuts

- Heuristics:
 - new solution improvement heuristic
 - new "lurking bounds" heuristic
 - extended some heuristics to work for models with SOS constraints
- Presolve:
 - implied product detection
 - · detect implicit piece-wise linear functions
 - sparsify objective function
 - substitute sub-expressions in presolve to sparsify constraints
 - better work limits in constraint sparsification
 - improved parallel column/row presolve reduction
 - activate SOS2 to big-M translation in some cases
- Additional improvements:
 - improved disconnected components
 - extended disconnected components detection to work for models with SOS constraints
 - reduced wait time in parallel synchronization by more flexible work load distribution
 - propagate objective function in node probing

New Solution Improvement Heuristics

Heuristics have improved significantly

Still opportunities to do better

• Particularly when the relaxation isn't a good guide

Better improvement heuristics

- ImproveStartGap, ImproveStartNodes, ImproveStartTime
- Comparison against old version on a set of difficult models
 - New scheme finds better solution on 83% of models

Convex MIQP and MIQCP Performance

MIQP: 24% faster

- Most MILP improvements apply
- Conversion of variables with concave objective into binaries for pure "box QPs"

MIQCP: 6% faster

- Most MILP improvements apply
- Improved presolve and node presolve propagation for quadratic constraints
- Propagate ≥ direction of quadratic equality constraints in presolve
- Extended disconnected components detection to work for MIQCPs
- Extended a number of primal heuristics to work for MIQCPs
 - including the zero-objective heuristic
- Improved fix-and-dive heuristics for MIQCPs

Major Features

© 2019, Gurobi Optimization, LLC

9

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

non-linear optimization

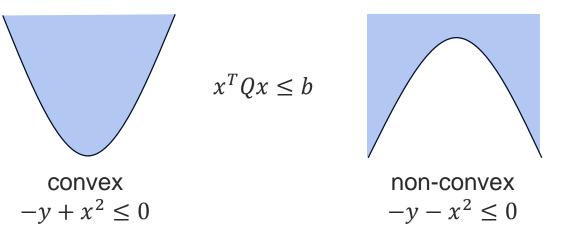
A lot of applications

- Pooling problem
- Petrochemical industry
- Wastewater treatment
- Emissions regulation
- Agricultural / food industry
- Etc.

(blending problem is LP, pooling introduces intermediate pools \rightarrow bilinear) (oil refinery: constraints on ratio of components in tanks)

(blending based on pre-mix products)

Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex



If Q is positive semi-definite (PSD) then $x^T Q x \le b$ is convex

• *Q* is PSD if and only if $x^T Q x \ge 0$ for all *x*

But $x^T Qx \le b$ can also be convex in certain other cases, e.g., second order cones (SOCs)

SOC:
$$x_1^2 + \dots + x_n^2 - z^2 \le 0$$

 $x^2 + y^2 - z^2 \le 0, z \ge 0$: at level z, (x, y) is a disc with radius z

What about non-convex quadratic constraints or objectives?

- Presolve might be able to convexify or to linearize them
- If this fails: GRB_ERROR_Q_NOT_PSD or GRB_ERROR_QCP_EQUALITY_CONSTRAINT

Gurobi 9.0 can solve any quadratic problem to global optimality

- No longer returns errors, just solves it (if the "NonConvex" parameter is set to 2)
- · Automatically transforms arbitrary non-convex quadratic constraints into bilinear constraints

$$3x_1^2 - 7x_1x_2 + 2x_1x_3 - x_2^2 + 3x_2x_3 - 5x_3^2 = 12$$
 (non-convex Q constraint)

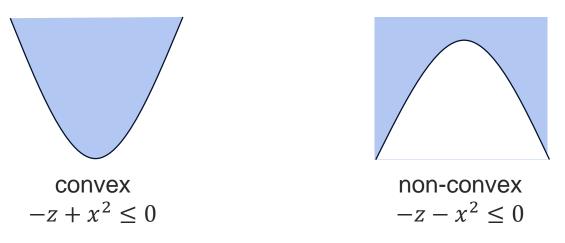
$$\begin{array}{c} \searrow \\ p_{11} \coloneqq x_1^2, p_{12} \coloneqq x_1 x_2, p_{13} \coloneqq x_1 x_3, p_{22} \coloneqq x_2^2, p_{23} \coloneqq x_2 x_3, p_{33} \coloneqq x_3^2 \\ 3p_{11} - 7p_{12} + 2p_{13} - p_{22} + 3p_{23} - 5p_{33} = 12 \end{array}$$

(6 bilinear constraints) (linear constraint)

- Solver engine is able to deal with bilinear constraints
 - cutting planes
 - spatial branching

Algorithmic treatment of bilinear constraints

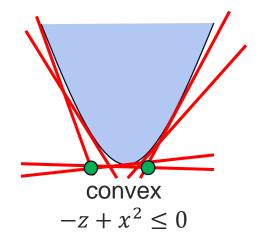
• General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)

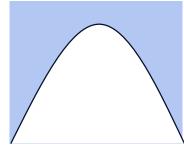


Algorithmic treatment of bilinear constraints

• General form: $a^T z + dxy \le b$ (linear sum plus single product term, inequality or equation)

Consider square case (x = y):



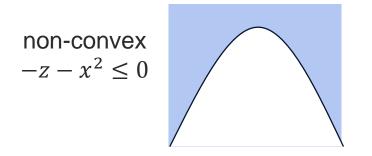


non-convex $-z - x^2 \le 0$

easy: add tangent cuts

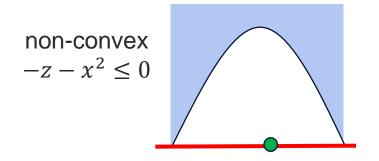
Algorithmic treatment of bilinear constraints

• General form: $a^T z + dxy \le b$ (linear sum plus single product term, inequality or equation)



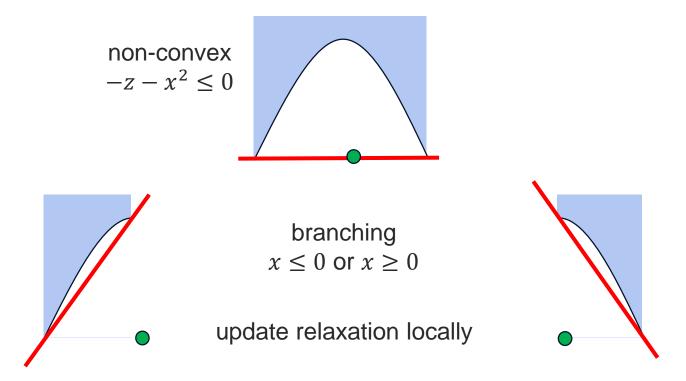
Algorithmic treatment of bilinear constraints

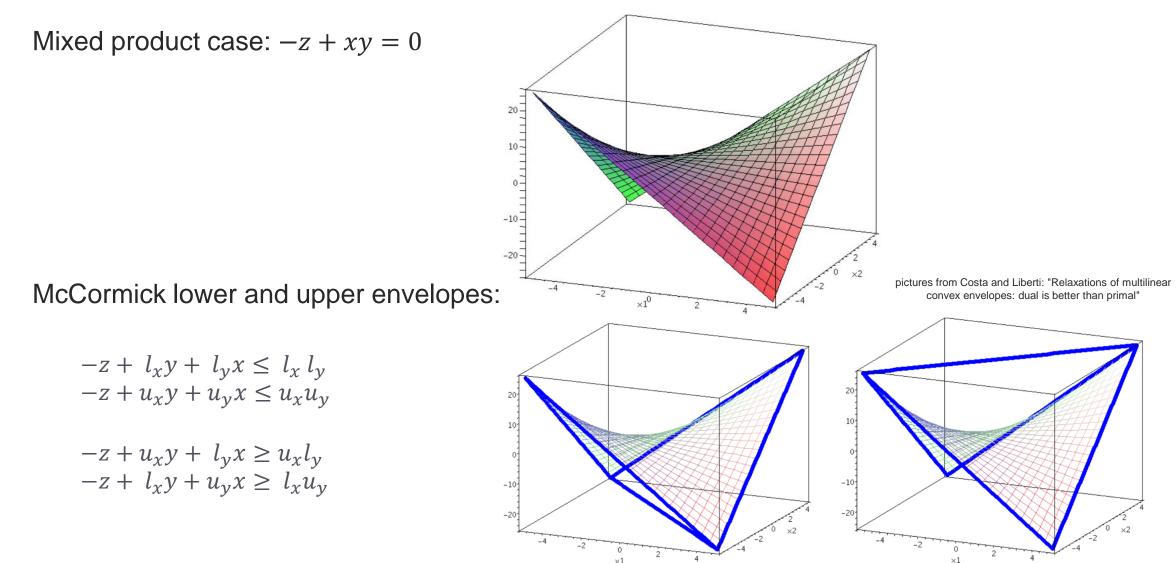
• General form: $a^T z + dxy \le b$ (linear sum plus single product term, inequality or equation)

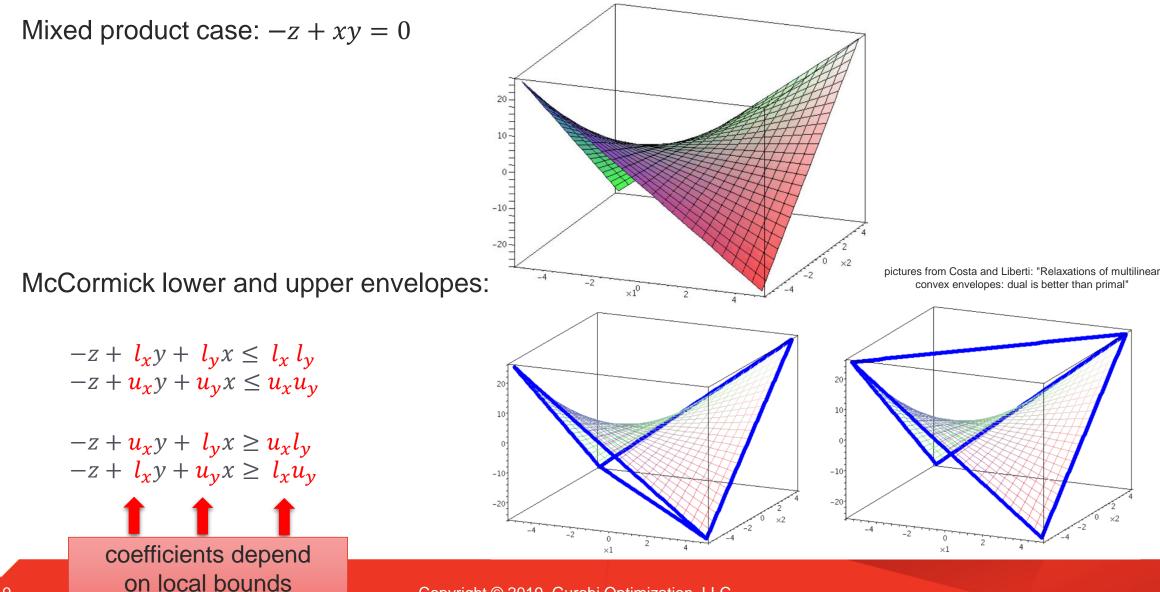


Algorithmic treatment of bilinear constraints

• General form: $a^T z + dxy \leq b$ (linear sum plus single product term, inequality or equation)







Copyright © 2019, Gurobi Optimization, LLC

Algorithmic ingredients

- Presolve translation of general non-convex Q constraints into bilinear constraints
- McCormick relaxation
- Spatial branching (branching on continuous variables)
- "Adaptive constraints"
 - automatically modify coefficients in McCormick relaxation after local bound change
 - alternative to adding more and more locally valid cuts
- Cutting planes
 - RLT cuts (RLT = Reformulation Linearization Technique)
 - BQP cuts (BQP = Boolean Quadric Polytope)
 - not yet in Gurobi: SDP cuts (SDP = Semi-Definite Program)

• ...

Can also use techniques for MILP

- Detection of linearization of products with a binary variable
- Results in performance improvement on MILP: RLT cuts and BQP cuts

Preliminary results vs. existing non-convex MIQCP solvers

- QPLIB benchmarks of Prof. Hans Mittelmann (Arizona State Univ.)
 - http://plato.asu.edu/bench.html
- Gurobi is faster and solves more models within time limit
- But: other solvers usually solve general MINLP, not specialized to non-convex MIQCP

Test set		Mosek	Knitro	Bonmin	СВС	Couenne	OcterAct	Baron	SCIP	F-SCIP	Antigone	Minotaur	Gurobi
non-convex binary	ratio						64.7x	16.2x	64.8x	46.7x	63.0x	85.8x	1.0x
	solved (80)						17	41	19	24	23	7	80
non-convex discrete	ratio					25.5x	30.6x	11.9x	18.3x	5.1x	12.6x	28.8x	1.0x
	solved (88)					8	1	24	15	41	29	4	66
non-convex continuous	ratio					5.1x	4.9x	2.2x	4.2x	2.7x	1.6x	5.4x	1.0x
	solved (49)					8	8	22	7	14	29	6	27
convex discrete	ratio	7.0x	11.4x	10.8x	31.1x			7.3x	13.5x	20.3x	28.6x	17.9x	1.0x
	solved (31)	12	9	10	2			11	11	8	2	11	21

results from December 16, 2019

22

Performance

Highlights

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

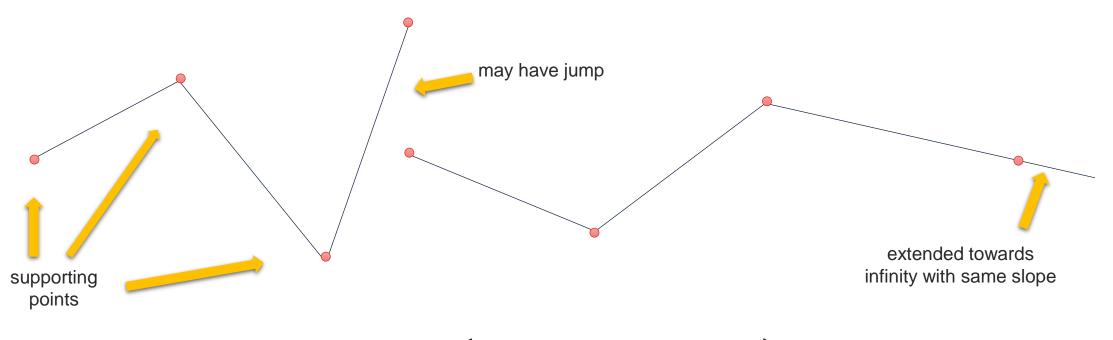
- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

non-linear optimization

Piecewise-Linear (PWL) Constraints

A new type of general constraint

Users specify the supporting points as a list of (x,y) tuples



$$y = PWL(x; (x_1, y_1), ..., (x_n, y_n))$$

Piecewise-Linear (PWL) Constraints

A new type of general constraint

Users specify the supporting points as a list of (x,y) tuples

Example

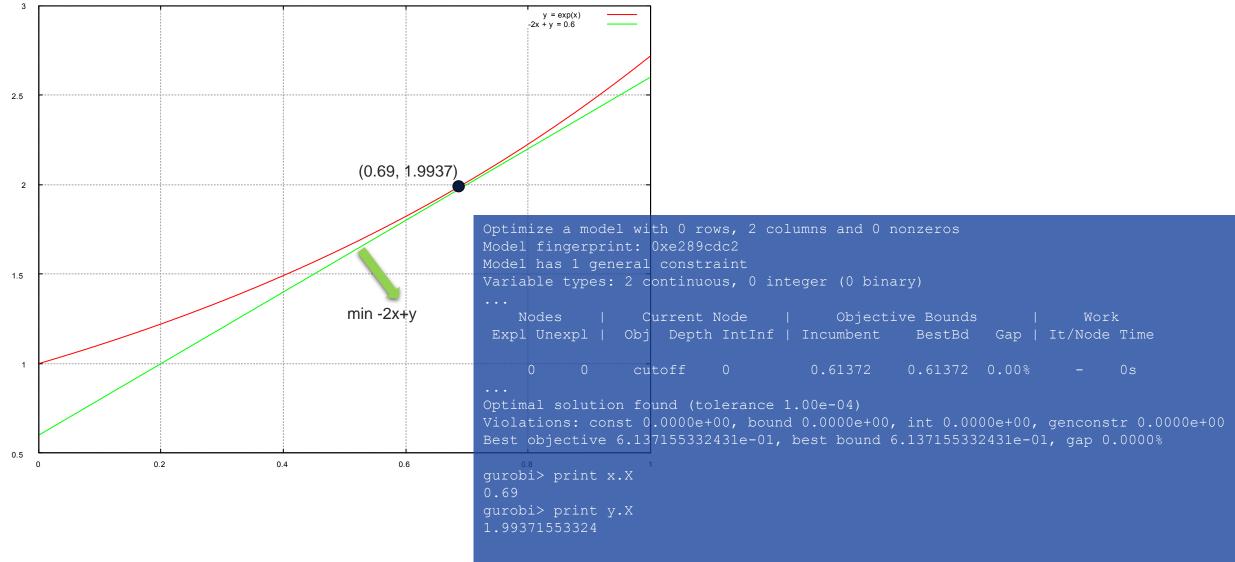
- $y = e^x$, $0 \le x \le 1$
- To approximate this as PWL constraint with 100 pieces, generate 101 points (xpts, ypts):

 $(0, e^{0}), (0.01, e^{0.01}), \dots, (1, e^{1})$

• Python code:

```
n = 100
xpts = [1.0*k/n for k in range(n+1)]
ypts = [math.exp(xpts[k]) for k in range(n+1)]
model = Model("pwltest")
x = model.addVar(lb=0, ub=1, name="x")
y = model.addVar(name="y")
gc = model.addGenConstrPWL(x, y, xpts, ypts, "gc")
model.setObjective(-2*x + y)
model.optimize()
```

Piecewise-Linear (PWL) Constraints



Function Constraints with Automatic PWL Translation

y = f(x)

Support: polynomial, $\log(x)$, $\log_a(x)$, e^x , a^x , x^a , $\sin(x)$, $\cos(x)$, $\tan(x)$

Another new type of general constraint

Example

- $y = e^x$, $0 \le x \le 1$
- Python code: gc = model.addGenConstrExp(x, y, name="gc")

Gurobi will automatically compute breakpoints and perform PWL translation

- Smart translation for periodic functions sin(), cos(), and tan()
- Use actual functions during presolve
- Bound strengthening in presolve may lead to more efficient PWL translation

Options for Automatic PWL Translation

Options

- FuncPieces, FuncPieceLength, FuncPieceError, FuncPieceRatio
- Attributes: specific for a function constraint
- Parameters: for all function constraints

Speed-versus-accuracy

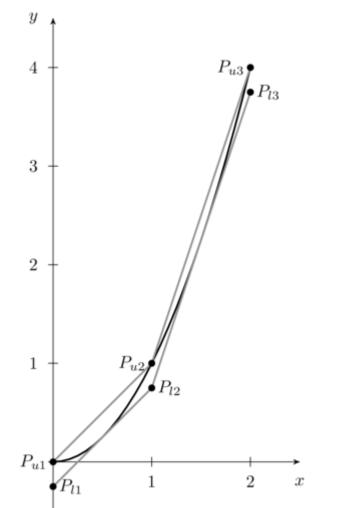
- FuncPieces, FuncPieceLength, FuncPieceError
- Choices for using piece length, number of pieces and maximum allowed error

Underestimate and overestimate

FuncPieceRatio

Example, $y = x^2$

- Underestimation: (P_{I1}, P_{I2}, P_{I3})
- Overestimation: (P_{u1}, P_{u2}, P_{u3})
- Error: 0.25 for both pieces [0,1] and [1,2]

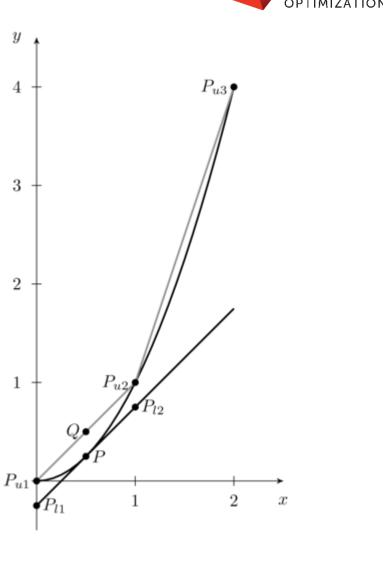


Non-linear Capability

- Multivariate polynomials can be decomposed into bilinear functions
 - $z = x^4 y^2$
 - Let $u = x^2$, $v = u^2$, $w = y^2$ (bilinear)
 - Then z = vw (bilinear)
- PWL constraints allow to approximate single-variable non-linear functions
- Solve wide range of non-linear programming problems to global optimality
 - e.g., $z = sin(x^2y) \cdot e^{x+y^2}$

Reality

- Errors will amplify for decomposing/combining
- Errors for PWL approximation can be big
- Example:
 - $y = x 0.25, y = x^2$
 - y = x 0.25 is for line (P₁₁, P, P₁₂)
 - P = (x, y) = (0.5, 0.25) is feasible
 - PWL approximation of $y = x^2$ with line segments (P_{u1} , P_{u2} , P_{u3})
 - y = 0.5 at x = 0.5, Q(0.5, 0.5) is quite far from P(0.5, 0.25)
 - Infeasible
 - FuncPieceLength=1 is too big: largest error = 0.25 is too big to be feasible



GUROBI

29

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

dealing with uncertainty

MIP Scenario Analysis

Motivation

- Math model is usually an approximation for the real-world application
- Inputs are often approximations e.g. forecasted demands
- Business condition or environment may change
- Important to know the sensitivity of the computed solution to the changes, e.g.
 - What if the demand for this item increases from 10 to 12?

Wrong approach

- Fix all integer variables, solve fixed model as LP, look at reduced costs and duals of fixed LP
- Gives bogus results! Does not make sense from mathematical point of view!

Our approach

- Have a base model
- Use attributes to specify a set of scenarios
 - each scenario is described by changes to the base model
 - currently supported changes: objective coefficients, variable bounds, linear constraint right hand sides
- Compute optimal solutions for all scenarios
- Solutions provide the insight into how the solution would change for different scenarios

MIP Scenario Analysis

Simple approach

- · Solve each scenario as an independent MIP
- Old example: sensitivity.py

New approach in Gurobi 9.0

- Convenient to define scenarios
 - use attributes
 - example sensitivity.py is rewritten by using the new feature
- Performance
 - faster
 - may add distributed version with Compute Server in a future version
 - information, such as objective bounds, feasible solutions for each scenario, still available even if you stop early (e.g., due to time limit)

Dealing With Uncertainty

MIP Scenario Analysis

- Find optimal solution for each individual scenario
- Each solution may be infeasible for other scenarios
- Analyze business model: how sensitive are best decisions w.r.t. input data?
- MIP-version of LP sensitivity analysis

Stochastic Optimization

- Find one solution that is optimal w.r.t. expected value over all scenarios
- User needs to specify probabilities for each scenario
 - or: provide probability density functions for random variables

Robust Optimization

- Find one solution that is optimal in worst case scenario
- Model coefficients are not fixed but user specifies ranges
 - more generally: coefficients should be in a specified convex set

© 2019, Gurobi Optimization, LLC

33

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices) data scientists, engineers
- New Compute Server capabilities
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

New Matrix Friendly API for gurobipy

About Python

- A very popular programming language
- Huge library
 - Standard library
 - 3rd party packages with simple package manager
- A top language for data science

Data scientists and engineers are used to work with matrices

• Large fraction of them use Python with NumPy and SciPy

gurobipy accepts NumPy's ndarrays and scipy.sparse matrices as input

- More convenient if the underlying model is naturally expressed with matrices
- Faster because no modeling objects for individual linear expressions are created
- API offers two layers (only linear constraints shown here):
 - Add matrix constraints directly from the data through Model.addMConstrs(A, x, sense, b)
 - Use matrix variable modeling objects x = Model.addMVar(shape), add constraints through Model.addConstr(A @ x <= b)

Python Matrix API – A Tiny Example

mip1.py: algebraic syntax

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("mip1")

```
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")
```

```
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)
```

```
m.addConstr(x + 2 * y + 3 * z <= 4, "c0")
m.addConstr(x + y >= 1, "c1")
```

m.optimize()

matrix1.py: matrix expressions

```
import numpy as np
import scipy.sparse as sp
import gurobipy as gp
from gurobipy import GRB
```

```
m = gp.Model("matrix1")
```

```
x = m.addMVar(shape=3, vtype=GRB.BINARY, name="x")
```

```
obj = np.array([1.0, 1.0, 2.0])
m.setObjective(obj @ x, GRB.MAXIMIZE)
```

```
data = np.array([1.0, 2.0, 3.0, -1.0, -1.0])
row = np.array([0, 0, 0, 1, 1])
col = np.array([0, 1, 2, 0, 1])
A = sp.csr_matrix((data, (row, col)), shape=(2, 3))
```

```
rhs = np.array([4.0, -1.0])
```

```
m.addConstr(A @ x <= rhs, name="c")</pre>
```

```
m.optimize()
```

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- Cluster Manager
- Batch optimization in Compute Server

Other improvements

36

- Intermediate solution files
- · Support for lazy constraint callback for Compute Server
- · Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

.

GUROBI

corporate IT, private cloud, offline solves

Cluster Manager

Administer cluster of Gurobi Compute Servers

- IT department can control and track cluster size and work-load
- Users can monitor and manage their jobs

User management

- Allows to assign users to different roles (user, admin, cluster admin)
- Improved security and API keys

Web UI for on-premise

• User-friendly graphical interface for administrators and users

Job history

Statistics and logs for individual jobs

Batch mode support

- Offline optimization for long running jobs
- Client application may disconnect and retrieve results later

Cluster Manager – Web UI

	GUROBI OPTIMIZATION													👤 gu 👻	
Gurobi Cluster Manager		Q Search batches X = My batches 200 batches X												×	
				Model	Created at $ igstarrow $	Submitted at	Ended at	User	Арр	1	Priority	Size	API	O	
D obs	■ Batches		\oslash	P0033.mps.gz	10/07/2019 6:39:34 pm	10/07/2019 6:39:35 pm	10/07/2019 6:39:35 pm	gu			0	0 KB	Java	LOG	
Eatches	Repository		\oslash	P0033.mps.gz	10/04/2019 3:32:21 pm	10/04/2019 3:32:22 pm	10/04/2019 3:32:22 pm	gu			0	1.3 KB	Python	LOG	
Cluster			\oslash	P0033.mps.gz	10/03/2019 9:27:38 pm	10/03/2019 9:27:38 pm	10/03/2019 9:27:38 pm	gu			0	0 KB	Python	LOG	
? Help			\oslash	MISC07.mps.gz	10/03/2019 9:18:20 pm	10/03/2019 9:18:21 pm	10/03/2019 9:18:27 pm	gu			0	0 KB	Python	LOG	
			\oslash	MISC07.mps.gz	10/03/2019 9:17:13 pm	10/03/2019 9:17:13 pm	10/03/2019 9:17:19 pm	gu			0	23.5 KB	Python	LOG	
			INFO	TI	MELINE	CLIENT	STATUS	INPU	Г		OUTPUT			·	
		ID 68c2c9e6-85c4-4e49-879a-50f575f8aac6				Runtime 9.0.0			Group						
		Batch	system	ID		Requested runtime to execute the batch			Batch job group placement request						
		Job ID fc2adf46-d2f3-438f-aaaf-f13b159588ba				^{Model} P0033.mps.gz			Priority				0		
		ID of job executed for this batch				Model input file			Priority of the batch						

© 2019, Gurobi Optimization, LLC

Batch Optimization in Cluster Manager

Motivation

- Compute Server allows the client code to off-load computing work to a server
- A MIP often takes very long to solve
 - requiring the client code to wait may not be convenient
- Feature request
 - allow client code to disconnect from the Compute Server and to shut down
 - later, client code should be able to reconnect and retrieve results

Technical Problem

- Reconnecting to the server creates a mapping problem
 - variable and constraint objects at client side are gone

Our solution

- Create models locally at client site
- Tag a set of relevant variables and constraints
- Submit the model to Compute Server, get batch ID and disconnect
- Use job ID to query status and solution in JSON format

Highlights

Performance

• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features

- Non-convex MIQCP (bilinear)
- Piecewise-linear (PWL) constraints
- Function constraints with automatic PWL translation
- MIP scenario analysis (what if, MIP sensitivity)
- New matrix friendly API for gurobipy (support for SciPy sparse matrices)
- Cluster Manager
- Batch optimization in Compute Server

Other improvements

- Intermediate solution files
- Support for lazy constraint callback for Compute Server
- Indices for variables and constraints in OO APIs
- Model attribute file
- Interactive shell updated from Python 2.7 to 3.7

Thank You – Questions?

The World's Fastest Solver