
What's New in Gurobi 9.0
Webinar

Tobias Achterberg

17/18 December 2019

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

2 © 2019, Gurobi Optimization, LLC

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

3 © 2019, Gurobi Optimization, LLC

LP Performance

Default: 7% faster

• Concurrent LP on 4 threads

Simplex: 5% faster (primal), no performance change (dual)

• Improved linear system solving (Ftran/Btran)

• Improved numerics for warm-start and corner cases

Barrier: 7% faster

• Crossover: improved numerics

• Support for AVX-512, 40% boost on models with expensive factorization

• yields another 4% overall improvement on AVX-512 systems

© 2019, Gurobi Optimization, LLC4

MIP Performance

MILP: 18% faster (26% faster on models that take >100 seconds)

• Heuristics:
• new solution improvement heuristic

• new "lurking bounds" heuristic

• extended some heuristics to work for models with SOS
constraints

• Presolve:
• implied product detection

• detect implicit piece-wise linear functions

• sparsify objective function

• substitute sub-expressions in presolve to sparsify constraints

• better work limits in constraint sparsification

• improved parallel column/row presolve reduction

• activate SOS2 to big-M translation in some cases

• Additional improvements:
• improved disconnected components

• extended disconnected components detection to work for
models with SOS constraints

• reduced wait time in parallel synchronization by more flexible
work load distribution

• propagate objective function in node probing

© 2019, Gurobi Optimization, LLC5

• Cuts:

• new RLT cuts

• new BQP cuts

• new RelaxLift cuts

• second type of "SubMIP" cuts

• use LP to find another aggregation for MIR cut separator

• randomize aggregation order in MIR cut separator

• try more scaling factors in MIR cut separator

• more aggressive cover cut separation

• occasionally separate "close cuts"

• tuned cut loop abort criteria for main and parallel cut loops

• improved dual bound updates from parallel root cut loops

• improved cut selection

• improved performance of zero-half and mod-k cut
separators

• limit effort in GUB cover and network cut separation
procedures

• limit effort in some very expensive cut separation procedure

• fixed a performance issue in symmetry cuts

New Solution Improvement Heuristics

Heuristics have improved significantly

Still opportunities to do better

• Particularly when the relaxation isn’t a good guide

Better improvement heuristics

• ImproveStartGap, ImproveStartNodes, ImproveStartTime

• Comparison against old version on a set of difficult models

• New scheme finds better solution on 83% of models

© 2019, Gurobi Optimization, LLC6

Convex MIQP and MIQCP Performance

MIQP: 24% faster

• Most MILP improvements apply

• Conversion of variables with concave objective into binaries for pure "box QPs"

MIQCP: 6% faster

• Most MILP improvements apply

• Improved presolve and node presolve propagation for quadratic constraints

• Propagate ≥ direction of quadratic equality constraints in presolve

• Extended disconnected components detection to work for MIQCPs

• Extended a number of primal heuristics to work for MIQCPs

• including the zero-objective heuristic

• Improved fix-and-dive heuristics for MIQCPs

© 2019, Gurobi Optimization, LLC7

© 2019, Gurobi Optimization, LLC8

Major Features

non-linear optimization

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

9 © 2019, Gurobi Optimization, LLC

Non-Convex QP, QCP, MIQP, and MIQCP

A lot of applications

• Pooling problem (blending problem is LP, pooling introduces intermediate pools → bilinear)

• Petrochemical industry (oil refinery: constraints on ratio of components in tanks)

• Wastewater treatment

• Emissions regulation

• Agricultural / food industry (blending based on pre-mix products)

• Etc.

10 © 2019, Gurobi Optimization, LLC

Non-Convex QP, QCP, MIQP, and MIQCP

Prior Gurobi versions: remaining Q constraints and objective after presolve needed to be convex

If 𝑄 is positive semi-definite (PSD) then 𝑥𝑇𝑄𝑥 ≤ 𝑏 is convex

• 𝑄 is PSD if and only if 𝑥𝑇𝑄𝑥 ≥ 0 for all 𝑥

But 𝑥𝑇𝑄𝑥 ≤ 𝑏 can also be convex in certain other cases, e.g., second order cones (SOCs)

Copyright © 2019, Gurobi Optimization, LLC11

convex

−𝑦 + 𝑥2 ≤ 0

𝑥𝑇𝑄𝑥 ≤ 𝑏

non-convex

−𝑦 − 𝑥2 ≤ 0

𝑥2 + 𝑦2 − 𝑧2 ≤ 0, 𝑧 ≥ 0: at level 𝑧, 𝑥, 𝑦 is a disc with radius 𝑧

SOC: 𝑥1
2 +⋯+ 𝑥𝑛

2 − 𝑧2 ≤ 0

Non-Convex QP, QCP, MIQP, and MIQCP

What about non-convex quadratic constraints or objectives?
• Presolve might be able to convexify or to linearize them

• If this fails: GRB_ERROR_Q_NOT_PSD or GRB_ERROR_QCP_EQUALITY_CONSTRAINT

Gurobi 9.0 can solve any quadratic problem to global optimality
• No longer returns errors, just solves it (if the "NonConvex" parameter is set to 2)

• Automatically transforms arbitrary non-convex quadratic constraints into bilinear constraints

3𝑥1
2 − 7𝑥1𝑥2 + 2𝑥1𝑥3 − 𝑥2

2 + 3𝑥2𝑥3 − 5𝑥3
2 = 12 (non-convex Q constraint)

𝑝11 ≔ 𝑥1
2, 𝑝12 ≔ 𝑥1𝑥2, 𝑝13 ≔ 𝑥1𝑥3, 𝑝22 ≔ 𝑥2

2, 𝑝23 ≔ 𝑥2𝑥3, 𝑝33 ≔ 𝑥3
2 (6 bilinear constraints)

3𝑝11 − 7𝑝12 + 2𝑝13 − 𝑝22 + 3𝑝23 − 5𝑝33 = 12 (linear constraint)

• Solver engine is able to deal with bilinear constraints
• cutting planes

• spatial branching

Copyright © 2019, Gurobi Optimization, LLC12

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic treatment of bilinear constraints

• General form: 𝑎𝑇𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex

−𝑧 + 𝑥2 ≤ 0
non-convex

−𝑧 − 𝑥2 ≤ 0

Copyright © 2019, Gurobi Optimization, LLC13

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic treatment of bilinear constraints

• General form: 𝑎𝑇𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

convex

−𝑧 + 𝑥2 ≤ 0
non-convex

−𝑧 − 𝑥2 ≤ 0

easy: add tangent cuts

Copyright © 2019, Gurobi Optimization, LLC14

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic treatment of bilinear constraints

• General form: 𝑎𝑇𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex

−𝑧 − 𝑥2 ≤ 0

Copyright © 2019, Gurobi Optimization, LLC15

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic treatment of bilinear constraints

• General form: 𝑎𝑇𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex

−𝑧 − 𝑥2 ≤ 0

Copyright © 2019, Gurobi Optimization, LLC16

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic treatment of bilinear constraints

• General form: 𝑎𝑇𝑧 + 𝑑𝑥𝑦 ≦ 𝑏 (linear sum plus single product term, inequality or equation)

Consider square case (𝑥 = 𝑦):

non-convex

−𝑧 − 𝑥2 ≤ 0

branching

𝑥 ≤ 0 or 𝑥 ≥ 0

update relaxation locally

Copyright © 2019, Gurobi Optimization, LLC17

Non-Convex QP, QCP, MIQP, and MIQCP

Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙𝑥𝑦 + 𝑙𝑦𝑥 ≤ 𝑙𝑥 𝑙𝑦
−𝑧 + 𝑢𝑥𝑦 + 𝑢𝑦𝑥 ≤ 𝑢𝑥𝑢𝑦

−𝑧 + 𝑢𝑥𝑦 + 𝑙𝑦𝑥 ≥ 𝑢𝑥𝑙𝑦
−𝑧 + 𝑙𝑥𝑦 + 𝑢𝑦𝑥 ≥ 𝑙𝑥𝑢𝑦

pictures from Costa and Liberti: "Relaxations of multilinear

convex envelopes: dual is better than primal"

Copyright © 2019, Gurobi Optimization, LLC18

Non-Convex QP, QCP, MIQP, and MIQCP

Mixed product case: −𝑧 + 𝑥𝑦 = 0

McCormick lower and upper envelopes:

−𝑧 + 𝑙𝑥𝑦 + 𝑙𝑦𝑥 ≤ 𝑙𝑥 𝑙𝑦
−𝑧 + 𝑢𝑥𝑦 + 𝑢𝑦𝑥 ≤ 𝑢𝑥𝑢𝑦

−𝑧 + 𝑢𝑥𝑦 + 𝑙𝑦𝑥 ≥ 𝑢𝑥𝑙𝑦
−𝑧 + 𝑙𝑥𝑦 + 𝑢𝑦𝑥 ≥ 𝑙𝑥𝑢𝑦

coefficients depend

on local bounds

pictures from Costa and Liberti: "Relaxations of multilinear

convex envelopes: dual is better than primal"

Copyright © 2019, Gurobi Optimization, LLC19

Non-Convex QP, QCP, MIQP, and MIQCP

Algorithmic ingredients

• Presolve translation of general non-convex Q constraints into bilinear constraints

• McCormick relaxation

• Spatial branching (branching on continuous variables)

• "Adaptive constraints"

• automatically modify coefficients in McCormick relaxation after local bound change

• alternative to adding more and more locally valid cuts

• Cutting planes

• RLT cuts (RLT = Reformulation Linearization Technique)

• BQP cuts (BQP = Boolean Quadric Polytope)

• not yet in Gurobi: SDP cuts (SDP = Semi-Definite Program)

• ...

Can also use techniques for MILP

• Detection of linearization of products with a binary variable

• Results in performance improvement on MILP: RLT cuts and BQP cuts

Copyright © 2019, Gurobi Optimization, LLC20

Non-Convex QP, QCP, MIQP, and MIQCP

Preliminary results vs. existing non-convex MIQCP solvers

• QPLIB benchmarks of Prof. Hans Mittelmann (Arizona State Univ.)

• http://plato.asu.edu/bench.html

• Gurobi is faster and solves more models within time limit

• But: other solvers usually solve general MINLP, not specialized to non-convex MIQCP

21 © 2019, Gurobi Optimization, LLC

Test set Mosek Knitro Bonmin CBC Couenne OcterAct Baron SCIP F-SCIP Antigone Minotaur Gurobi

non-convex

binary

ratio 64.7x 16.2x 64.8x 46.7x 63.0x 85.8x 1.0x

solved (80) 17 41 19 24 23 7 80

non-convex

discrete

ratio 25.5x 30.6x 11.9x 18.3x 5.1x 12.6x 28.8x 1.0x

solved (88) 8 1 24 15 41 29 4 66

non-convex

continuous

ratio 5.1x 4.9x 2.2x 4.2x 2.7x 1.6x 5.4x 1.0x

solved (49) 8 8 22 7 14 29 6 27

convex

discrete

ratio 7.0x 11.4x 10.8x 31.1x 7.3x 13.5x 20.3x 28.6x 17.9x 1.0x

solved (31) 12 9 10 2 11 11 8 2 11 21

results from December 16, 2019

non-linear optimization

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

22 © 2019, Gurobi Optimization, LLC

Piecewise-Linear (PWL) Constraints

A new type of general constraint

Users specify the supporting points as a list of (x,y) tuples

23 © 2019, Gurobi Optimization, LLC

supporting

points

may have jump

extended towards

infinity with same slope

𝑦 = 𝑃𝑊𝐿 𝑥; 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

Piecewise-Linear (PWL) Constraints

A new type of general constraint

Users specify the supporting points as a list of (x,y) tuples

Example

• 𝑦 = 𝑒𝑥, 0 ≤ 𝑥 ≤ 1
• To approximate this as PWL constraint with 100 pieces, generate 101 points (xpts, ypts):

0, 𝑒0 , 0.01, 𝑒0.01 , … , 1, 𝑒1

• Python code:
n = 100
xpts = [1.0*k/n for k in range(n+1)]
ypts = [math.exp(xpts[k]) for k in range(n+1)]

model = Model("pwltest")
x = model.addVar(lb=0, ub=1, name="x")
y = model.addVar(name="y")
gc = model.addGenConstrPWL(x, y, xpts, ypts, "gc")
model.setObjective(-2*x + y)
model.optimize()

24 © 2019, Gurobi Optimization, LLC

y exp x

 x y

Piecewise-Linear (PWL) Constraints

© 2019, Gurobi Optimization, LLC25

Optimize a model with 0 rows, 2 columns and 0 nonzeros

Model fingerprint: 0xe289cdc2

Model has 1 general constraint

Variable types: 2 continuous, 0 integer (0 binary)

...

Nodes | Current Node | Objective Bounds | Work

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 cutoff 0 0.61372 0.61372 0.00% - 0s

...

Optimal solution found (tolerance 1.00e-04)

Violations: const 0.0000e+00, bound 0.0000e+00, int 0.0000e+00, genconstr 0.0000e+00

Best objective 6.137155332431e-01, best bound 6.137155332431e-01, gap 0.0000%

gurobi> print x.X

0.69

gurobi> print y.X

1.99371553324

(0.69, 1.9937)

min -2x+y

Function Constraints with Automatic PWL Translation

𝑦 = 𝑓(𝑥)

Support: polynomial, log 𝑥 , log𝑎(𝑥), 𝑒
𝑥, 𝑎𝑥, 𝑥𝑎, sin(𝑥), cos 𝑥 , tan(𝑥)

Another new type of general constraint

Example

• 𝑦 = 𝑒𝑥, 0 ≤ 𝑥 ≤ 1

• Python code: gc = model.addGenConstrExp(x, y, name=“gc”)

Gurobi will automatically compute breakpoints and perform PWL translation

• Smart translation for periodic functions sin(), cos(), and tan()

• Use actual functions during presolve

• Bound strengthening in presolve may lead to more efficient PWL translation

26 © 2019, Gurobi Optimization, LLC

Options for Automatic PWL Translation

Options

• FuncPieces, FuncPieceLength, FuncPieceError,
FuncPieceRatio

• Attributes: specific for a function constraint

• Parameters: for all function constraints

Speed-versus-accuracy

• FuncPieces, FuncPieceLength, FuncPieceError

• Choices for using piece length, number of pieces
and maximum allowed error

Underestimate and overestimate

• FuncPieceRatio

Example, 𝑦 = 𝑥2

• Underestimation: (Pl1, Pl2, Pl3)

• Overestimation: (Pu1, Pu2, Pu3)

• Error: 0.25 for both pieces [0,1] and [1,2]

27 © 2019, Gurobi Optimization, LLC

Non-linear Capability

Theory
• Multivariate polynomials can be decomposed into bilinear functions

• 𝑧 = 𝑥4𝑦2

• Let 𝑢 = 𝑥2, 𝑣 = 𝑢2, 𝑤 = 𝑦2 (bilinear)

• Then 𝑧 = 𝑣𝑤 (bilinear)

• PWL constraints allow to approximate single-variable non-linear functions

• Solve wide range of non-linear programming problems to global optimality

• e.g., z = 𝑠𝑖𝑛 𝑥2𝑦 ∙ 𝑒𝑥+𝑦
2

Reality
• Errors will amplify for decomposing/combining

• Errors for PWL approximation can be big

• Example:

• 𝑦 = 𝑥 − 0.25, 𝑦 = 𝑥2

• 𝑦 = 𝑥 − 0.25 is for line (Pl1, P, Pl2)

• 𝑃 = (𝑥, 𝑦) = (0.5, 0.25) is feasible

• PWL approximation of 𝑦 = 𝑥2 with line segments (Pu1, Pu2, Pu3)

• 𝑦 = 0.5 at 𝑥 = 0.5, Q(0.5, 0.5) is quite far from P(0.5, 0.25)

• Infeasible

• FuncPieceLength=1 is too big: largest error = 0.25 is too big to be feasible

28 © 2019, Gurobi Optimization, LLC

dealing with uncertainty

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

29 © 2019, Gurobi Optimization, LLC

MIP Scenario Analysis

Motivation
• Math model is usually an approximation for the real-world application

• Inputs are often approximations e.g. forecasted demands

• Business condition or environment may change

• Important to know the sensitivity of the computed solution to the changes, e.g.
• What if the demand for this item increases from 10 to 12?

Wrong approach
• Fix all integer variables, solve fixed model as LP, look at reduced costs and duals of fixed LP

• Gives bogus results! Does not make sense from mathematical point of view!

Our approach
• Have a base model

• Use attributes to specify a set of scenarios
• each scenario is described by changes to the base model

• currently supported changes: objective coefficients, variable bounds, linear constraint right hand sides

• Compute optimal solutions for all scenarios

• Solutions provide the insight into how the solution would change for different scenarios

30 © 2019, Gurobi Optimization, LLC

MIP Scenario Analysis

Simple approach

• Solve each scenario as an independent MIP

• Old example: sensitivity.py

New approach in Gurobi 9.0

• Convenient to define scenarios

• use attributes

• example sensitivity.py is rewritten by using the new feature

• Performance

• faster

• may add distributed version with Compute Server in a future version

• information, such as objective bounds, feasible solutions for each scenario, still available
even if you stop early (e.g., due to time limit)

31 © 2019, Gurobi Optimization, LLC

Dealing With Uncertainty

MIP Scenario Analysis
• Find optimal solution for each individual scenario

• Each solution may be infeasible for other scenarios

• Analyze business model: how sensitive are best decisions w.r.t. input data?

• MIP-version of LP sensitivity analysis

Stochastic Optimization
• Find one solution that is optimal w.r.t. expected value over all scenarios

• User needs to specify probabilities for each scenario
• or: provide probability density functions for random variables

Robust Optimization
• Find one solution that is optimal in worst case scenario

• Model coefficients are not fixed but user specifies ranges
• more generally: coefficients should be in a specified convex set

32 © 2019, Gurobi Optimization, LLC

data scientists, engineers

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• New Compute Server capabilities

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

33 © 2019, Gurobi Optimization, LLC

New Matrix Friendly API for gurobipy

About Python

• A very popular programming language

• Huge library

• Standard library

• 3rd party packages with simple package manager

• A top language for data science

Data scientists and engineers are used to work with matrices

• Large fraction of them use Python with NumPy and SciPy

gurobipy accepts NumPy’s ndarrays and scipy.sparse matrices as input

• More convenient if the underlying model is naturally expressed with matrices

• Faster because no modeling objects for individual linear expressions are created

• API offers two layers (only linear constraints shown here):

• Add matrix constraints directly from the data through Model.addMConstrs(A, x, sense, b)

• Use matrix variable modeling objects x = Model.addMVar(shape), add constraints through
Model.addConstr(A @ x <= b)

34 © 2019, Gurobi Optimization, LLC

Python Matrix API – A Tiny Example

mip1.py: algebraic syntax

import gurobipy as gp

from gurobipy import GRB

m = gp.Model("mip1")

x = m.addVar(vtype=GRB.BINARY, name="x")

y = m.addVar(vtype=GRB.BINARY, name="y")

z = m.addVar(vtype=GRB.BINARY, name="z")

m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

m.addConstr(x + y >= 1, "c1")

m.optimize()

matrix1.py: matrix expressions

import numpy as np
import scipy.sparse as sp
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("matrix1")

x = m.addMVar(shape=3, vtype=GRB.BINARY, name="x")

obj = np.array([1.0, 1.0, 2.0])
m.setObjective(obj @ x, GRB.MAXIMIZE)

data = np.array([1.0, 2.0, 3.0, -1.0, -1.0])
row = np.array([0, 0, 0, 1, 1])
col = np.array([0, 1, 2, 0, 1])
A = sp.csr_matrix((data, (row, col)), shape=(2, 3))

rhs = np.array([4.0, -1.0])

m.addConstr(A @ x <= rhs, name="c")

m.optimize()

© 2019 Gurobi Optimization, LLC35

corporate IT, private cloud, offline solves

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• Cluster Manager

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

36 © 2019, Gurobi Optimization, LLC

Cluster Manager

Administer cluster of Gurobi Compute Servers

• IT department can control and track cluster size and work-load

• Users can monitor and manage their jobs

User management

• Allows to assign users to different roles (user, admin, cluster admin)

• Improved security and API keys

Web UI for on-premise

• User-friendly graphical interface for administrators and users

Job history

• Statistics and logs for individual jobs

Batch mode support

• Offline optimization for long running jobs

• Client application may disconnect and retrieve results later

37 © 2019, Gurobi Optimization, LLC

Cluster Manager – Web UI

38 © 2019, Gurobi Optimization, LLC

Batch Optimization in Cluster Manager

Motivation

• Compute Server allows the client code to off-load computing work to a server

• A MIP often takes very long to solve

• requiring the client code to wait may not be convenient

• Feature request

• allow client code to disconnect from the Compute Server and to shut down

• later, client code should be able to reconnect and retrieve results

Technical Problem

• Reconnecting to the server creates a mapping problem

• variable and constraint objects at client side are gone

Our solution

• Create models locally at client site

• Tag a set of relevant variables and constraints

• Submit the model to Compute Server, get batch ID and disconnect

• Use job ID to query status and solution in JSON format

39 © 2019, Gurobi Optimization, LLC

Highlights

Performance
• New cuts, new solution improvement heuristics, AVX-512 support, etc.

Major features
• Non-convex MIQCP (bilinear)

• Piecewise-linear (PWL) constraints

• Function constraints with automatic PWL translation

• MIP scenario analysis (what if, MIP sensitivity)

• New matrix friendly API for gurobipy (support for SciPy sparse matrices)

• Cluster Manager

• Batch optimization in Compute Server

Other improvements
• Intermediate solution files

• Support for lazy constraint callback for Compute Server

• Indices for variables and constraints in OO APIs

• Model attribute file

• Interactive shell updated from Python 2.7 to 3.7

40 © 2019, Gurobi Optimization, LLC

Thank You – Questions?

