
Dr. Jue Xue
Technical Account Manager
April 9, 2024

What’s New in Gurobi 11.0

© 2024 Gurobi Optimization, LLC., All Rights Reserved

Agenda
Performance and New Features

LP
MILP
MIQCP

Global MINLP
Adaptive Constraints

Other New Features
Cluster and Compute Server
Improvements
Java & Gurobipy Enhancements

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 2

3

LP QP

MIQCP
Convex &

nonConvex

MIQPMILP

SOCP MINLP
New in 11

Bi-linear

QCP

Gurobi solves the
broadest range
of problems –
regardless of
size or type.

Performance
Improvements
Highlights

MODEL TYPE /
ALGORITHM

OVERALL SPEED-UP
(>1s)

HARD MODELS
(>100s)

• MILP
• MIQP
• Convex MIQCP
• Non-Convex MIQCP

8.6 %
12.8 %

9.2 %
133.4%

(2.3x)

12.4%
22.8%
18.2%

480.2%
(5.8x)

Mean runtime improvements for different algorithms across all models of a particular type

Source: R&D - Internal model database

11.0 vs. 10.0

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 5

Linear Programming

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 5

LP
Performance Evolution

232

174
166

158

112

81

58
66 70

27 25

0

5

10

15

20

25

30

35

40

45

50

0

25

50

75

100

125

150

175

200

225

250

v1.1 v2.0 v3.0 v4.0 v5.0 v6.0 v7.0 v8.0 v9.0 v10.0 v11.0

Comparison of Gurobi Versions (PAR-10)

unsolved speed-up

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Default settings:
• Gurobi 1 – 4: dual simplex
• Gurobi 5+: concurrent LP

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 6

Test set has 2574 models:
- 225 discarded due to inconsistent answers
- 77 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 596 models

• Method
• -1: automatic
• 0: primal simplex
• 1: dual simplex
• 2: barrier
• 3: non-deterministic concurrent LP
• 4: deterministic concurrent LP
• 5: deterministic concurrent simplex

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 7

Concurrent LP Algorithm Parameters

• Method
• -1: automatic
• 0: primal simplex
• 1: dual simplex
• 2: barrier
• 3: non-deterministic concurrent LP
• 4: deterministic concurrent LP
• 5: deterministic concurrent simplex

(deprecated)

• ConcurrentMethod
• -1: automatic
• 0: barrier/dual/primal
• 1: barrier/dual
• 2: barrier/primal
• 3: dual/primal

Gurobi 10.0 Gurobi 11.0

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 8

Mixed Integer Linear Programming

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 8

MILP
Performance Evolution

1655

1511

1343
1265

1134

939

575

385
319

202 173

0

10

20

30

40

50

60

70

80

90

0

200

400

600

800

1000

1200

1400

1600

1800

v1.1 v2.0 v3.0 v4.0 v5.0 v6.0 v7.0 v8.0 v9.0 v10.0 v11.0

Comparison of Gurobi Versions (PAR-10)

unsolved speed-up

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 7766 models:
- 714 discarded due to inconsistent answers
- 2124 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 2892 models

~80x faster
since Release 1

• New procedure for finding constraints
• … to which mixed integer aggregation rounding can be applied

• Using “U-cut procedure” from Christophel
• Integrated in our MIR aggregation procedure

• Parameter MixingCuts with values -1, 0, 1, 2

• Performance impact: 0.5% overall, 1.2% on >100sec models

• References:
• O. Gunluk, Y. Pochet: Mixing mixed-integer inequalities.

Math. Program. 90, 429–457 (2001). https://doi.org/10.1007/PL00011430
• P. Christophel: Separation algorithms for cutting planes based on mixed integer row relaxations:

implementation and evaluation in the context of mixed integer programming solver software. (PhD thesis)
University of Paderborn, 2009, pp. 1-222

Mixing Path Cuts

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 11

Non-convex MIQCP

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 11

Non-convex MIQCP
Performance Evolution

149

124

81

62

18

0

10

20

30

40

50

60

70

80

90

0

20

40

60

80

100

120

140

160

180

v9.0 v9.1 v9.5 v10.0 v11.0

Comparison of Gurobi Versions (PAR-10)

unsolved speed-up

Time limit: 10000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 1064 models:
- 50 discarded due to inconsistent answers
- 344 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 275 models

~88x faster
since Release 9

• Nonconvexity could be a sign of an error in model or data

• NonConvex:
• -1: automatic
• 0: return error if original model has nonconvex Q objective or constraints
• 1: return error if presolved model has nonconvex Q that cannot be linearized
• 2: accept nonconvex Q by using a bilinear transformation

• NonConvex default value change – may surprise or break user code!
• Gurobi 11.0 default (-1): essentially equivalent to 2
• Gurobi 10.0 default (-1): equivalent to 1

• Users now may want to set NonConvex=1 explicitly

Quadratic Objective and Constraints
NonConvex Parameter

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 14

Nonlinear Constraints

• Gurobi 9.0 and later provide API to define nonlinear functions
• 𝑒 , 𝑎

• ln 𝑥 , log (𝑥)

• sin 𝑥 , cos 𝑥 , tan 𝑥

• 𝑥

• 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑

• Gurobi 9.0 – 10.0:
• Nonlinear functions are replaced during presolve by a piecewise-linear approximation

• Gurobi 11.0:
• Can choose to treat nonlinear constraints exactly

addGenConstrExp(), addGenConstrExpA()
addGenConstrLog(), addGenConstrLogA()
addGenConstrSin(), addGenConstrCos(), addGenConstrTan()
addGenConstrPow()
addGenConstrPoly()

addGenConstrExp(), addGenConstrExpA()
addGenConstrLog(), addGenConstrLogA()
addGenConstrSin(), addGenConstrCos(), addGenConstrTan()
addGenConstrPow()
addGenConstrPoly()

• Existing PWL approximation of general function constraints are controlled by
• FuncPieces
• FuncPieceLength
• FuncPieceError
• FuncPieceRatio

• The default behavior of FuncPieces is now to use a relative error approach
• Was mainly restricting the total number of pieces in Gurobi 10.0

• New FuncNonlinear attribute to switch between PWL and outer approximation:
• -1: behavior defined by FuncNonlinear parameter
• 0: use static PWL approximation
• 1: use dynamic outer approximation

• New FuncNonlinear parameter to control default (-1) of attributes:
• 0: use static PWL approximation
• 1: use dynamic outer approximation

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 15

FuncNonlinear Parameter and Attribute

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 16

Global MINLP with Adaptive
Constraints

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 16

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 17

PWL Approximation vs. Outer Approximation

lb ub𝑥lb ub𝑥

PWL approximation outer approximation

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 18

• Not much to get from the relaxation if
domain of 𝑥 is large

• Branching on 𝑥 tightens the relaxation
quickly!

• Tighter initial bounds will speed up
performance

“Large” Domains

𝑥lb ub

• After solving the convex relaxation, how do we branch on the violated
nonconvexities?

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 19

Branching

non-convex
−𝑧 − 𝑥 ≤ 0

𝑥

𝑧

branching
𝑥 ≤ 𝑡 or 𝑥 ≥ 𝑡

update relaxation bounds and the
associated McCormick envelopes locally

t

• Adaptive constraints change dynamically as the algorithm proceeds
• They involve values that change as the algorithm proceeds

• Coefficients and right-hand sides of an envelope constraints depend on the local
bounds of variables

• Whenever local bounds change, coefficients, and right-hand sides are updated
• This may lead to a singular or ill-conditioned basis
• Products of bounds in the McCormick constraints can lead to very large or small right-hand

side values

• By contrast, MILP has almost no adaptive constraints
• Local bound strengthening can occur, but it mostly involves tighter bounds and doesn’t

affect any constraint matrix values
• (Optional) Implied bound cuts/coefficient reduction can modify the matrix coefficients

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 20

Adaptive Constraints

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 21

Other New Features

• Copy model from one environment to another

c = m.copy() # regular copy: c in same environment as m
c = m.copy(env) # new: c is created in environment env

• Use case: parallel execution of two optimization runs

• Caveat:
• Can copy to a remote (Compute Server) model but not from a remote model

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 22

Copying Models From Local Environment

• Interrupting a solve and then calling optimize() again:
• Gurobi 10: changes to Threads parameter in between are ignored
• Gurobi 11: changes to Threads parameter will be obeyed when resuming

• Example use case:

m.Params.Threads = 8
m.Params.SoftMemLimit = 4
m.optimize()
if m.status == gp.GRB.MEM_LIMIT:

m.Params.Threads = 1
m.optimize()

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 23

Interrupt and Resume with Change of Threads

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 24

Cluster and Compute Server
Enhancements

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 25

Increased Flexibility for Compute Cluster

• Compute Cluster Overview

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 26

Improved Cluster Manager/Compute Server
Compute Server/Cluster Manager facilitates the deployment and use

of optimization services on-premises or on private cloud.

• New Look&Feel

• Time zone selection and
formatting

• Improved security

• Enforce memory/time
limit server side

• Case sensitivity settings for usernames

• Support for SAML Authentication Protocol
• Ex: Microsoft Azure AD, Okta, JumpCloud, Google and others

• Support of Microsoft Azure CosmosDB
• In addition to Amazon DocumentDB and MongoDB

© 2024 Gurobi Optimization, LLC., All Rights Reserved | 27

More Flexible Enterprise Integration

Azure CosmosDB

© 2023 Gurobi Optimization, LLC., All Rights Reserved | 28

APIs: Java & Gurobipy Enhancements

• Java package name is now com.gurobi.gurobi instead of gurobi
• To follow Java standard naming scheme

• Java package now distributed on Maven Central
• Most popular Java package repository
• Similar to PyPI for Python
• Requested by multiple customers
• Helps build and deployment processes for Java users

Java API

• Type hinting batteries included
• No more gurobipy-stubs

• setup.py install is no more
• Offline installs are possible with pip
• Hash verification is possible with pip

• conda and pip play nicely together
• No more duplicate installs
• Cleaner install for our open-source

packages on conda

gurobipy: Installation changes

• Callback functions now accept matrix-friendly API objects

• Numpy-style concatenation (hstack, vstack, concatenate)

• Matrix-friendly indicator constraints (vectorized, broadcastable)

gurobipy: Matrix-friendly API integration

x_sol = model.cbGetSolution(x)
model.cbLazy(A @ x <= b)
x_sol = model.cbGetSolution(x)
model.cbLazy(A @ x <= b)

X = model.addMVar((n, m))
Y = model.addMVar((n, k))
XY = gp.concatenate((X, Y), axis=1) # (n, m+k) MVar

X = model.addMVar((n, m))
Y = model.addMVar((n, k))
XY = gp.concatenate((X, Y), axis=1) # (n, m+k) MVar

z = model.addVar(vtype=GRB.BINARY)
x = model.addMVar(n)
model.addGenConstrIndicator(z, True, A @ x <= b) # MGenConstr ...

z = model.addVar(vtype=GRB.BINARY)
x = model.addMVar(n)
model.addGenConstrIndicator(z, True, A @ x <= b) # MGenConstr ...

• Disable the default environment (opt-in feature)
• Set environment variable GUROBIPY_ALLOW_DEFAULTENV=0
• Helps with debugging token & remote job leaks, thread safety

• Less silent failures
• Env.setParam raises an exception for unknown parameters
• Model.getAttr/setAttr raises an exception for variables not in a model
• Select/sum/prod raises an exception if too many keys are passed

gurobipy: Debugging assists

• Any callable object can be a callback
• Makes callable classes an option for callbacks
• Avoids the model._attribute workaround
• Check out the refreshed tsp.py and callback.py examples

• Performance improvements
• addConstr(A @ x == b) ~2x faster for sparse data
• ~10-20% faster term-based modelling patterns (credit to

the Cython developers for that one!)

• Check out the Detailed Release Notes for a complete list

gurobipy: Other notable mentions

Questions?

