Using MIP to Model Midstream Energy Assets

Levi DeLissa

The World's Fastest Solver

Welcome to the Webinar

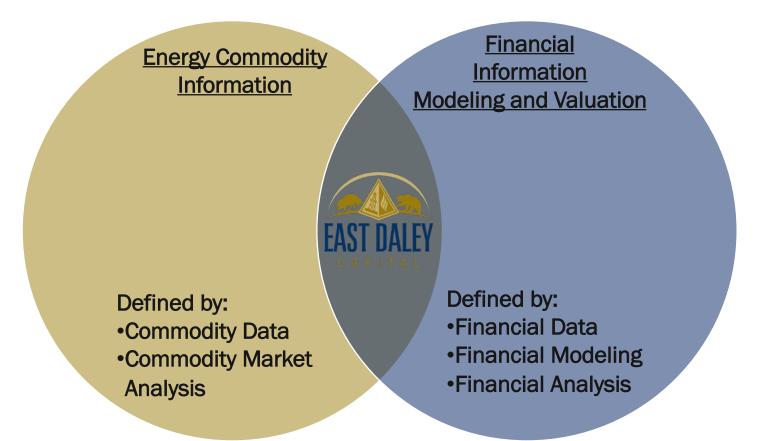
Using MIP to Model Midstream Energy Assets

The World's Fastest Solver

Speaker Introduction

Levi DeLissa

- Data Scientist at East Daley Capital
- MS in Industrial Engineering and BS in Industrial Engineering from Kansas State University
- Spent 5 years in Colorado working with East Daley Capital, helping people use data to quantify risk in the midstream energy sector
- Passionate about solving challenging problems



Using MIP to Model Midstream Energy Assets

Levi DeLissa

Who is East Daley?

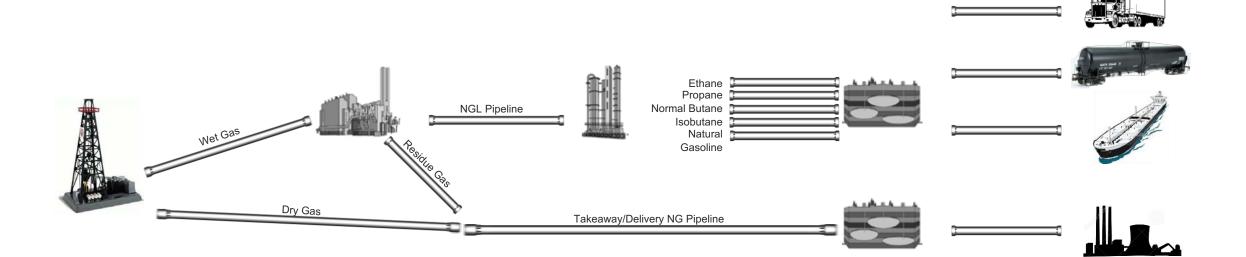
Reshaping the way markets use data to quantify risk for North American energy infrastructure, midstream, and E&P companies

Fractionation

Transportation and

Storage

Exploration and

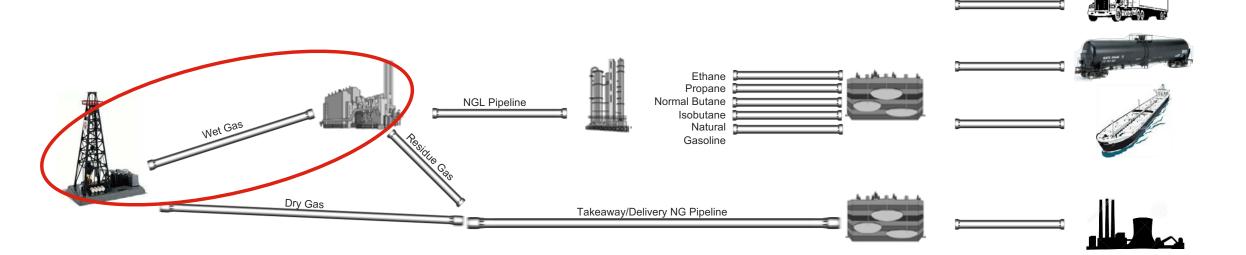

Production

Gathering and

Processing

Midstream 101

*Simplified **Oil Not Included

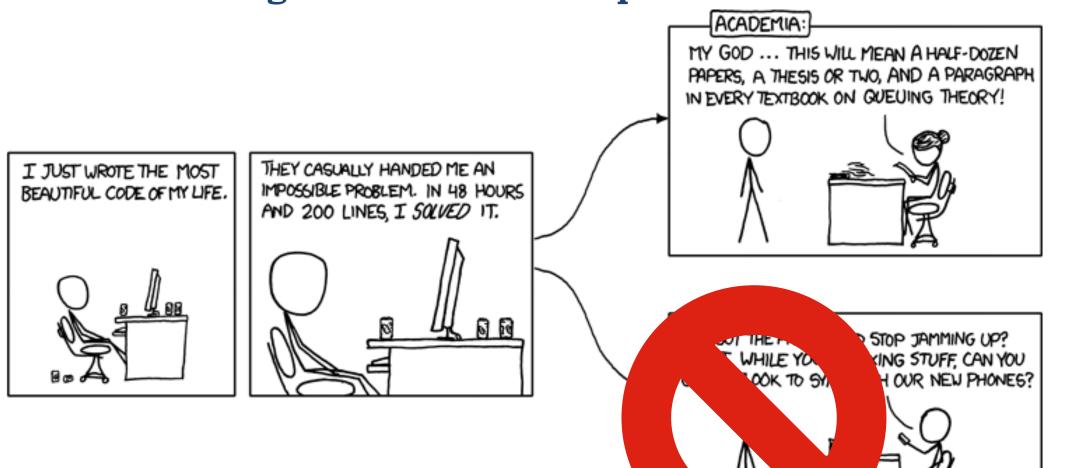


Consumption and

Distribution

Some questions

- If the price of oil goes to \$30 what happens?
- If there is a hurricane in South Texas what happens?
- If Chesapeake Energy is at risk of bankruptcy what happens?
- If a drilling rig drills a new well at 31.7° N, -101.9° W what happens?

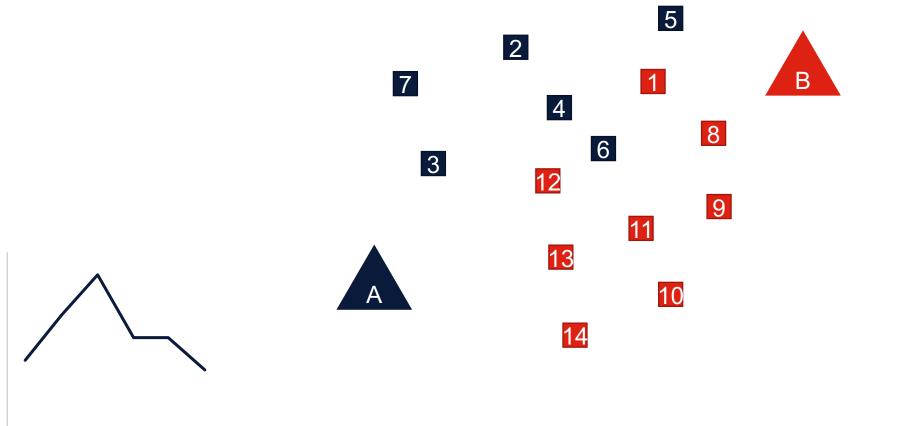


Wait... I though this was about optimization?

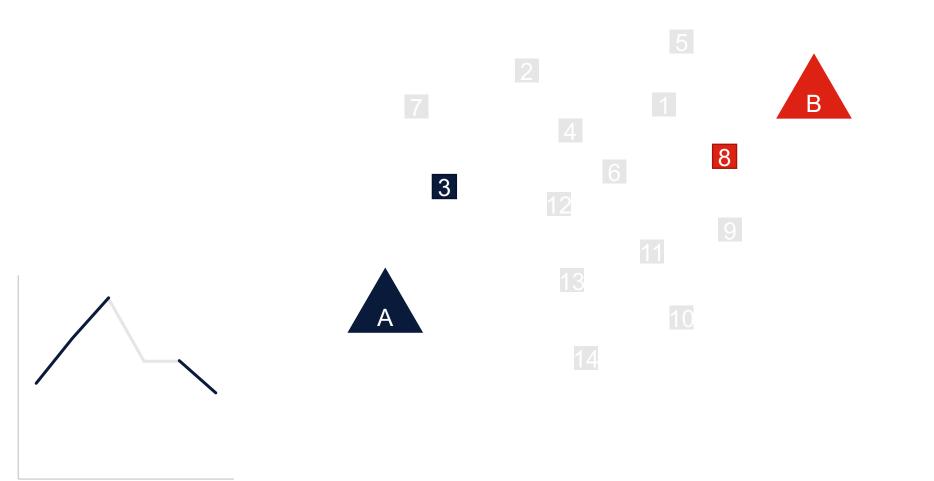
COMIC SOURCED FROM XKCD.COM

Gas Gathering & Processing

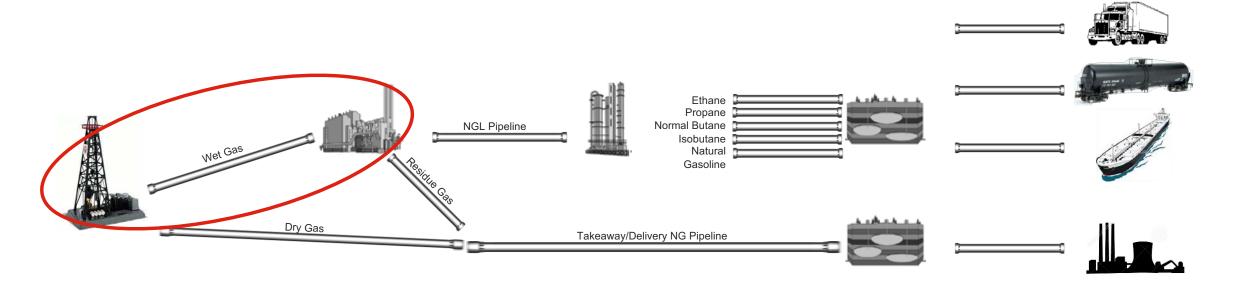
- Complex Pipeline Networks
- Hundreds of Processing Plants
 - Grouped into Systems
- Millions of Wells



In a perfect world



In reality



The goal

- Answer detailed questions about the midstream supply chain
- Systematically model which wells are connected to each processing system

The model

- Determine which wells provide input volumes to which G&P systems.
- Align with any known facts.
 - Volumes
 - Geography
- Given multiple choices, choose the 'best' one

Decision variables

- Determine which wells provide input volumes to which G&P systems.
 - Assume 100% volume allocation
 - Assume constant within the time period in question
- Set of wells W
- Set of systems *S*
- Let $x_{ij} \in \{0, 1\}$ be 1 if well $i \in W$ is allocated to system $j \in S$
 - |W| * |S| binary variables
 - Logical constraint $\sum_{j \in S} x_{ij} \le 1 \ \forall i \in W$

Constraints

- Align with any known facts.
 - Volumes
 - Geography
- Set of time periods T
- Set of well volumes WV
- Set of system volumes SV
- $\sum_{i \in W} x_{ij} * WV_{it} = SV_{jt} \forall j \in S t \in T$
 - |S| * |T| constraints

Constraints cont.

- Align with any known facts.
 - Volumes
 - Geography

Objective

• Given multiple choices, choose the 'best' one

- Set of well to system costs C
 - Another series of models to calculate costs

• Minimize $\sum_{i \in Wells \ j \in Systems} x_{ij} * C_{ij}$

• Model is complete, but not likely to be feasible (or useful)

Revisiting infeasible constraints

• $\sum_{i \in W} x_{ij} * WV_{it} = SV_{jt} \forall j \in S t \in T$

- Reformulate as a 'soft' constraint(s)
 - Add variable $f \in \mathbb{R}^+$ which represents units of constraint violation for system *j* in time period *t*
 - $\sum_{i \in W} x_{ij} * WV_{it} f_{ijt} \le SV_{jt} \forall j \in S t \in T$
 - $\sum_{i \in W} x_{ij} * WV_{it} + f_{ijt} \ge SV_{jt} \forall j \in S t \in T$
 - Add $\sum_{i \in W} f_{ijt}$ to objective function to minimize violation

Linear constraints

- Linear constraints can exactly model many things
 - If then
 - Either or
 - Max and Min

- Linear constraints can approximate many things
 - Piecewise functions

• Still encounter non-linear

Multiple objectives

• When working with 'soft' constraints importance can be an issue

EAST DALEY

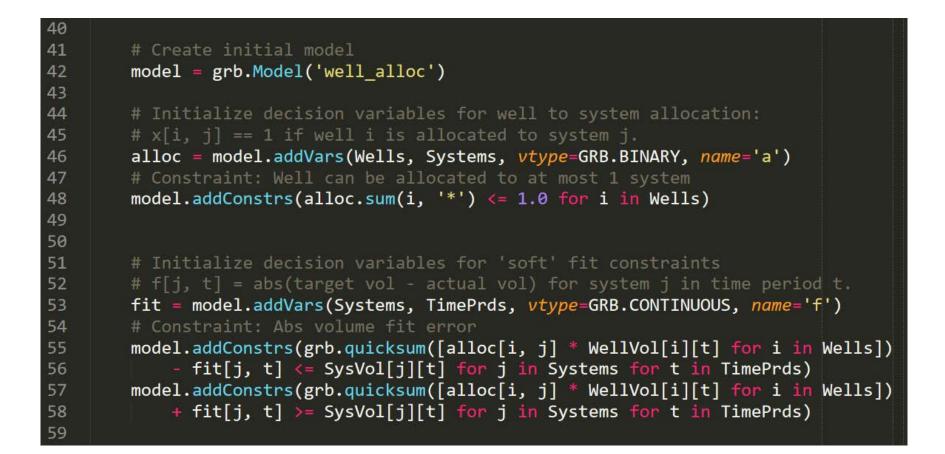
GUROBI

OPTIMIZATION

- Two approaches
 - Weighted
 - Hierarchy

• You can do the work yourself, or you can let Gurobi take care of this under the hood

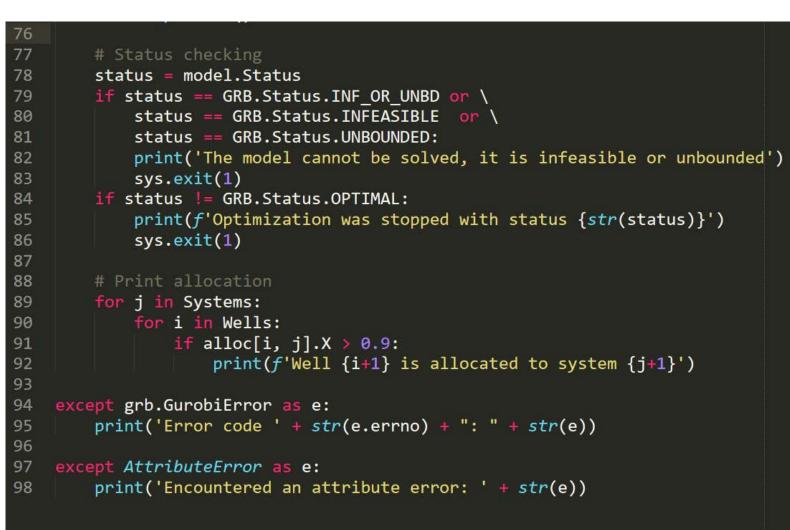
Implementation - Setup


1	import sys	
2	import gurobipy as grb	
3	from gurobipy import GRB	
4		
5	try:	
6	# Sample data	
7	Wells = range(14)	
8	Systems = range(2)	
9	TimePrds = range(6)	
10	SysVol = [[20, 31, 40, 26, 26, 19],	
11	[57, 41, 37, 27, 23, 13]]	
12	WellVol = [[10, 5, 5, 4, 3, 1],	
13	[10, 6, 4, 4, 3, 1],	
14	[0,10,5,5,4,3],	
15	[0,10,6,4,5,4],	
16	[0, 0, 10, 6, 4, 5],	
17	[0, 0, 10, 3, 7, 5],	
18	[10, 5, 5, 4, 3, 1],	
19	[9, 5, 4, 3, 3, 2],	
20	[10, 6, 4, 4, 3, 1],	
21	[5, 5, 6, 2, 2, 1],	
22	[9, 8, 4, 3, 4, 4],	
23	[4, 2, 1, 1, 1, 1],	
24	[10, 5, 5, 4, 3, 1],	
25		
26	WellSysCost = [[3, 1],	
27 28	[2, 2],	
28	[0, 3],	
30	[2, 2],	
30	[3, 1],	
32	[2, 2], [1, 3],	
33		
34	[3, 0], [3, 1],	
35	[2, 2],	
36	[2, 2],	
37	[2, 2],	
38	[1, 3],	
39	[1, 3]	
10		

40

Implementation – Variables & Constraints

Implementation - Objective



Implementation – Process Solution

Variable hints

• Data is always changing

- Depending on region of country model runs can take from seconds to 24+ hours.
- <u>Typically</u> doesn't make catastrophic changes to the solution
- Variable hints can help algorithm make good decisions based on outside knowledge
- Drastically reduce time required to update models with new data

Closing thoughts

- MIP is an excellent framework for stating a problem
 - Not just big decision making
 - Modeling process helpful to understand problem
- Advances in hardware/software have greatly expanded the scope of what is possible
- Using MIP for G&P allocation has some beneficial properties
 - Can't prove model wrong without making it better
 - Simple framework for adding new categories of 'facts'
 - Balanced
 - Gap/Bounds provide some sense of opportunity
 - Patent pending
- Gurobi features can significantly speed up development time (and accuracy)

Thank You – Questions?

The World's Fastest Solver

Your Next Steps

- If you haven't already done so, please register for an account at <u>http://www.gurobi.com</u>
- For questions about Gurobi pricing contact sales@gurobi.com or <a href="mailto:sales@gurobi.
- A recording of this webinar, including the slides, will be available in roughly one week