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Once again: Practical Optimization at a Crossroads

Current and past areas of interest: logistics, transportation, supply chain, advertising,
pricing, yield management, market analytics, mechanism design, ...

These areas will remain relevant, but ...

The future: heavy engineering, hard science.

Very nonlinear, complex models that embody hard, inflexible rules.

Very large scale, high level of modeling detail, myriad details in complex systems.
Demanding performance requirements: must get good solutions fast.

Traditional optimization and Operations Research must have a stake in this domain.



Outline For This Talk

* Review of basic AC and DC Optimal Power flow.
« Relaxations and linear relaxations* — computational experiments! *
* GO competitions run by the Department of Energy. *

« Gurobi Optimods demonstration. *

* = new content as compared to first webinar
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Standard ACOPF

We are given a power system, i.e., a network of

e Generators
e Power lines and transformers
e Buses (nodes)

e Each bus has a load, i.e., numerical demand for power generators, lines,
transformers and buses (nodes) with power demands

|

Objective: meet demands at minimum cost

|

Cost incurred at generators

|

Note: power flows following laws of physics
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A formal textbook statement of standard ACOPF
Minimize cost of generation: }_ g Fg(P9)

e Here, G is the set of generators
e P9 is the (active) power generated at g

o F, is generation cost at g — convex, piecewise-linear or quadratic

Example: F,(P) = 3P? + 2P

Constraints:

e PF (power flow) constraints: choose voltages so that network delivers
power from generators to the loads, following AC power flow laws

e Voltage magnitudes are constrained

e Power flow on any line km cannot be too large

e The output of any generator is limited
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Complex current

Admittance matrix for line km

Skm —
(Grr — 3Bk) |Ve|* + (Grem — 7Brm) | V|| Vin|(cos O + 7 sin O,y,) ‘ GUROBI
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Ohm’s Law

#<
S T,
™

Compiex power

Sym= 50.0+20.0j

Sk= -49.9-21.02]

i.e.,

Complex power arriving at m =
=S «= 49.9+21.02j

0.1 loss in active power

1.02 gain in reactive




§ (k)

“Reactive” power generation/demand at k

||

> kmesr) Sem = Ciegy Pi — PY) + 1(XCiegy Q7 — Q)

/

LHS = complex power injected into grid at k

Real power demand at k

Total real (“active”) power generated at k
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Basic ACOPF Minimize ), Fi( P;)

with constraints:

VY branch km: Skm =
(Grk — 3Bri) |Vi|? + (Grm — 7Bim) |Vi||Vin|(cos Ogm + 7 sin Oyy,)

kaed(k) Skm = (Zzeg( k) P — P, d) '(Zzeg Qg QZ)

Power flow limit on branch km:
|Sk:m|2 — Re( Skm)2 + Im( ‘Sk:m)2 < Ukm

Voltage limit on bus &:
‘/;cmin S |‘/k| S V

Generator output limits:

Pimins ‘Pig < Emax ‘ GUROBI
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But there is an equivalent formulation as a V, - v, fﬁJ O

QCQP

(Quadratically Constrained Quadratic Program) m

9

kem—

Skm —
(G — 3Brk) |Vi|? + (Gim — 7Bim) | V|| Vin| (cos Ok, + 7 sin Oy,

) "

Vk Gk +.) Bkk. ka "’J Bku
Skm == Vk >/ (Vm> Y "
L - \(f“k +J g"‘l. G-MM ‘)'\)EMV\

Admittance matrix for line km

L < Use rectangular coordinates for voltages ‘

GUROBI
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ACOPF as a QCQP

Skm =
(Gkk - jBkk) I‘/k|2 + (ka _jBkm) |‘/k||Vm|(COS Orm + J sin ekm)

Imaginary (“reactive”) part

Qrm = —Bi( €2+ f2) — Bim( exem + frem) + Gim( —exfm + frem)
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A common simplification: the DC approximation

Y branch km: Sk, =
(Grk — 7Bik) |Vi|? + (Grm — 3Bim) |Vi||Vin|(cos Ok + 7 sin O,

o |Vi| = 1 for all buses k. Why?
e cos Oy,, = 1 and sin 0y, = 0, — 0,,, for all branches km.

e [gnore reactive power.
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o

OPTIMIZATION



DC approximation

Minimize ) ;. Fi( P)

with constraints:

V branch km:  Pry = Yem( Ok — Om)

> kmeor)y Pom = (Liegpy PP — FY)

Power flow limit on branch km:
IP kml S Ukm

Generator output limit on bus &:
‘ GUROBI
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ACOPF as a QCQP ®>5 (m)

(Quadratically Constrained Quadratic Program) omplex power i emted info ki at ‘
, - le’ %
Skm = 4 = Lafe”™
(Grr — 3Bit) |Vi|? + (Gim — 7Bim) | V|| Vin|(cos Ok + 7 sin Oy.,)
o =4 -9,

) "

Vk Gk +.) Bkk. ka "’J Bku
Skm = Vk >/ (Vm> Y -
! ) \(r"h_ H) B G )8

Admittance matrix for line km

V. = & + J fb «<—— Use rectangular coordinates for voltages ‘ GUROBI
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Solving convex relaxations of ACOPF

McCormick relaxation
Spatial branching
Outer approximation of convex quadratics

Cuts
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McCormick relaxation - an important workhorse

Suppose a formulation has a bilinear expression, xy

ot <z <al, yh <y <yY

— — A Convex Overestimators

1 Convex Underestimators s |
- TY w—
yY '
Then: introduce a new variable, w. Convex hull of all points (x,y,w} provided by under/over estimators
The underestimators of the function are represented by:
L L L L . U U U U
wZ2ry+ry — 7y cw2ry+ry — Y
yL
The overestimators of the function are represented by:
U L U L. U L L U : :
w<rytry' —ry swsry +ry— Yy U 5 i,

In formulation, replace each occurrence of xy with the variable w.
And write the four inequalities involving w, x and .

(source: Wikipedia)

Works well in tandem with spatial branching. ‘ GUROBI
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Spatial branching

«  Anadaptation of classical branch-and-bound.

«  Example: suppose that we have a variable x with
Suppose that the solution to a relaxation has x = 0.65 0.5 S i S 1.0

e Then we branch:
 Branch 1:

* Branch 2: 0.5 < z <0.65

« McCormick inequalities tightened in both branches.

0.65 < z < 1.0
¥ GUROBI
q
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Outer envelope approximation of convex quadratics

onTer—o-pPpirokime Doy

C V\J’S

Why needed?

Potential pitfalls:

. Many cuts may be needed to accurately approximate a
quadratic.

. Cuts may be nearly parallel
. Many quadratics may need to be accurately approximated

. We may succeed in revealing a global feature, at a cost

. Consequently, the resulting linearly constrained problem
may prove challenging
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And how well does spatial branching work on ACOPF?

Root relaxation 300 seconds Interior Point Interior point

Knitro time (s)

9 2264.30 5301.40* 5296.69 0.24

30 0.00 154.08 576.89 0.47

118 0.00 0.00 129660.69 0.24

1354pegase 23037.69 23037.69 74069.35 2.45

ACTIVSg2000 649917.91 649917.91 1228892.08 3.01
(Gurobi 10 on QCQP)

Why is lower bound so bad?
How about upper bounds ... using spatial branching? ‘ GUROB|
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Skm =

(Gt — JBrr) |Vi|? + (Gikm

v

Real (“active”) part

A critical observation

— 3Bikm) |Vk||Vim|(cos Okm + 7 sin Ok,y,)

Gir |[Ve|? + Gim |Vi||Vin| €08 Orm + Bim |Vi||Vin| sin O

Skm = |‘/k||Vm| sin Oy,

Pkm -
Introduce new variables: ’vk = |Vkl|?,  ckm = |Vk||Vin| cos Orm,
!
(2)

Pin = Gie v+ Gim Ckm + Bim Skm

2 2 '2),,(2)
andt | Chpy + Sk S Vg “Um

Pkm —

Jabr inequality

New variables can be related to rectangular coordinates for voltages

G( €2+ f2) + Gim( exem + frem) + Bim( —€xfm + frem)



Minimize ), Fi( P})

with constraints:

> kmes) Skm = Ciegm) B = Fi) + 1 icgw) QF — @1

VY branch km : Spm = Pem + 71Qrm
Py, = Gy 'v(z) + Gikm Ckm + Bim Skm
Qim = —Bik S —Bim Cim + Gim Skm
— v,(c) = e; + [, Ckm = €xem + fkfm, Skm = —€rfm + frem
Piri® + Qim” < Uim

ymin < () < pmax v pyg k

ppin < PI < plmax Y/ generator k



Minimize ), ; Fi( P})

with constraints:

> kmesk) Skm = Qicgu) P Y — P) + j (D icar) Q7 - Q7)
VY branch km : Sipm = Pem + 1Qrm

(2)

Pkm — Gkk (%% + ka Cikm T Bkm Skm

Qrim = —DBiy v;(f)

—Bim Cem + Grm Skm
2
= &, +52, < vvd
Pkm2 + ka2 S Ukm

ymin < 32 < pmax v pygs k

prn < PJ < pmax Y/ generator 4



We can see an improvement

Jabr relaxation value Relaxation time (s) Interior point value | Interior point time (s)

5296.67 0.00 5296.69 0.24

30 573.58 0.03 576.89 0.47

118 129297.41 0.32 129660.69 0.24

1354pegase 740092.83 2.02 74069.35 2.45

ACTIVSg2000 1226328.77 4.29 1228892.08 3.01

3120sp 2130950.72 53.01 2142703.77 5.24

9241pegase 309238.37 31.00 315912.43 161.29
9241pegase 84371.82 Root time: 400 s

Jabr + non-convex

ACTIVSg10k 1337732.48 64.00 2485898.75 223.88

premature termination Ten cores Two cores

13659pegase 361664.26 59.00 386107.52 228.02

premature termination Ten cores Two cores

(Gurobi 10 on SOCP, Knitro from Matlab as interior point solver) Why this behavior?



Lessons to learn (so far)

Large SOCP relaxations are difficult for our solvers. Why?

Many of the Jabr (SOC) constraints are tight at optimum - they are needed.

Outer approximations, if accurate, require many linear inequalities.
All are needed, or else relaxation inaccurate.
If too many outer envelop inequalities are used, relaxation becomes hard.

A challenge for spatial branch-and-bound:
Either start from weak relaxation, or use a very heavy formulation at every node
A challenge for heuristics

What is needed? An effective, compact linear relaxation.



Minimize ). Fi( P))
with constraints:
> kmesk) Skm = Qicg) Pi — P Y + 5> icquy Qi — Q%)
YV branch km : Sk = Pim + 71Qkm
P — G 'v(2) = G Clin = B B%in

Qrm = — Bk ’U;(cz)

—Bim ¢km —Grkm Skm
— 2 +s; < v,(gz)vg)
Pim® + Qrm® < Uim
Vmin < 98 < ymex y byg &

Prin < P7 < Pmax Y generator ¢

&

GUROBI
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Another critical observation

Skm =
(Gkk - jBkk) I‘/k|2 + (ka _jBkm) |‘/k||Vm|(COS ekm + .7 sin akm)

Real (“active”) part: Py, = Grr |[Vil? + Gim |Vi||Vin| €08 Okm + Bim | V|| Vin| sin Ok,
2
Py, = Gk 'v,(c) +  Gikm Ckm + Bim Skm

Observation: Pkm + Pmk — power “loss” Z 0

(+ G. Munoz, 2014)

Using this inequality, and foregoing the (rotated cone) Jabr ineq., already yields a very tight relaxation (linear?)




Minimize ), Fi( P;)

with constraints:

Ekmeé(k) Skm = (Zzeg( k) P — d) '(Zzeg Qg Q‘,ﬁ)
V branch km : Skm = Prm + 1Qrm
Py, = Gix v( ) + G Crre+ By B
Qim = —Bik, vy —Bim Ckm +Glim Skm
Printd £ = 0 &«
Peri? + Qrm’® < Uiy
pm < fv,(cz) <V Y bus k

ppin < P9 < pPrax Y/ generator ¢

&

GUROBI
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The almost linear formulation (gray = conic)

1354pegase 730269.92 0.81 74069.35 2.45
740092.83 2.02
ACTIVSg2000 1201333.04 1.93 1228892.08 3.01
1226328.77 4.29
3120sp 2061763.91 2.60 2142703.77 5.24
2130950.72 53.01
3375wp 7267498.66 2.00 7412072.19 5.66
7393015.73 5.00
6468rte 84117.84 2.29 unable to converge long
unable to converge 48.00
9241pegase 304392.01 7.32 315912.43 161.29
309238.37 31.00
ACTIVSg10k 2364513.20 7.23 2485898.75 129.54
unable to converge 146.94
13569pegase 372046.88 6.98 386107.52 320.00
unable to converge 76.00
ACTIVSg25k 5802299.18 125 6017830.61 86.07
unable to converge 332
ACTIVSg70k 15305723.20 162.10 16439499.87 450.55

unable to converge 684.05



Skm =
(Grk — 3Bik) |Vil® + (Gim — 5Bim) | Vi||[Vin|(coS Ogm + J sin Op,)

Gk > 0 > Gy, = G 2 —Gri, Brm = Bk

P, = Grr [Vil? + Girm |Vi||Vin| €08 Okm + Bim |Vi||Vin| sin Oxm
Py, = Gk ’U,(cz) + Gim Ckm + Bim Skm
P, = Grm vV + Gk ckm — Bim Skm

Py + Ppe = Gk v’(cz) + Gum v + 2Gkm ckm > min{Gir, Grum } ’U,(cz) + v3) — 2¢p,,)




Flow decomposition

60\) Nofe : 100+60 =160
100 <
\Y 60 +75+20 =155

Each W"”+ °f
load ond loss
accownteld fvr
by FS CoVrf/}FnMJ7"J
qw,+' @‘f' Dehe,whon



Pim + Pok = im0 + gem( 02 + 0@ — 2¢4)  (0%m > 0,
Pin + Po = T [Tgm|*  (hysics)

(2) .(2)

Use 4, tomodel |Igm|? So: 2, =

9km > O)

oiom V) 4 gem( V) + 0@ — 2¢km)

Tkm

(more physics)

P2+ Qi = |Vil*|Iem|?
P +Q < v

but don’t: we do not want too many tight SOC constraints

(Castillo et al, Coffrin et al) \ (2)
2Pkm S 'vk ‘|‘

(for example)

&
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LP-based cutting plane algorithm

min Z Fi(P§)

=== Matias Villagra (PhD student) «<o

subject to:

S Sim = (PE— P +J(QF - QF)

=) Cut management kmed(k)

Y branch km:

Skm — Pkm +ijm

2
Pim = Gk V;E ) + GimCiem + BimSkem

(2)

Qkm = —Bikv,” + BkmCkm — GkmSkm
Qkm = — Bk V,Ez) + BkmCkm — GkmSkm
Outline i@ — (62 + B2)(v® + v = 2cim)

e Start from basic formulation (an LP?).

V,znin S V/£2) S V‘:nax
i g
P‘r(mn < Pk < Plr(nax

Y bus k

Y bus k
Vk e g

<— key variable !

* |terate:

Solve linearly constrained problem.

Separate outer-envelope cuts for Jabr constraints (within tolerance).
Separate outer-envelope cuts for 12 constraints (within tolerance).
Discard old enough cuts, if slack enough.

Reject new cuts if too parallel to existing cuts.




LP-based cutting plane algorithm: details

=) Matias Villagra (PhD student)

1 -5
ctx >0, d'x > 0 parallel if cos(angle. 4) > 1 — 10

2

e Start from basic formulation.

* lterate:
e Solve linearly constrained problem.

Add cuts if non-parallel.

Add cuts if non-parallel.

min » " Fi(P§)
keg

subject to:

Y. Sim=(Pf - P{)+j(Qf - QF)

kmes(k)

V branch km:
Skm = Pkm +J Qkm
Prm = Gk Vs> + GimChm + BiemSikem
Qkm = — Bk V,Ez) + BkmCkm — GkmSkm
Qkm = — Bk V,Ez) + BkmCkm — GkmSkm
ik = (Gl + BR) (v + vin) — 2ckm)

Vl:nin < V/EQ) < ymax

PE" < P < PP

Y bus k

Y bus k
Vke g

<— key variable !

Compute the top 55% most violated Jabr-envelope cuts in current solution.
Compute the top 15% most violated i2-envelope cuts in current solution.

Discard old (5 or more iterations) cuts which are slack (violation > 1e-5).




Performance of cutting-plane Algorithm (gray = Gurobi on conic)

Cutting-plane Log barrier time (s)

1354pegase 74000.3 3.68 74069.35 2.45
74006.95 1.20
ACTIVSg2000 1225960 6.52 1228892.08 3.01
1226328.77
2869pegase 133863 16.51 133999.29 2.99
133875.022 2.61
3120sp 2131250 5.5 2142703.77 5.24
unable to converge
3375wp 7393140 25.13 7412072.19 5.66
unable to converge 5.21
9241pegase 309297 67.55 315912.43 161.29
309040.38
ACTIVSg10k 2471240 16.31 2485898.75 129.54
unable to converge 20.20
13569pegase 379167 79.88 386107.52 320.00
unable to converge
ACTIVSg25k 5979740 51.32 6017830.61 86.07
unable to converge 61.11
ACTIVSg70k 16300200 205.9 16439499.87* 450.55

unable to converge

Gurobi parameters: method = Barrier, BarHomogeneous = 1, NumericFocus = 1, BarConvTol = 1e-6, FeasibilityTol = 1e-6, OptimalityTol = 1e-6
Knitro used as interior point solver.



Finding feasible solutions: the GO2 competition

Whereas developing strong relaxations is important from a fundamental standpoint ...
the industry is focused on computing good solutions, fast enough.

 The GO (Grid Optimization) Competition has been run by the U.S. Department of Energy
for several years.

e Itis currentlyinits third iteration, or “Challenge”.

* Here we will talk on our experience in Challenge 2 (with Richard Waltz, Knitro/Artelys).
We placed #2. The winner was Hassan Hijazi (LANL).

* All competitions have focused on finding good solutions within time limits.
 Many important industry features that go beyond standard ACOPF.

* One particular feature is especially relevant ...

4 GUROB]
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Feature: configurable admittance matrices

7/ (Gkk ) Bi ka +J E“"‘

G G+ T :\/<V“ ~ S v T

me ¥ Pai M 7)) “mm o vm k m K )
I Ohm’s Law Complex power
Complex current
Admittance matrix for line km

= - ¥

s _vl|Y (V>

km = k Vin

L -

“ GUROBI
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Feature: configurable admittance matrices G, ) Buw G‘m LY

Admittance matrices include information about physical attributes such 7/ = . % G g
as: me t ) Pai Mm + ) Pmm

* Pure impedance (resistance and reactance)
* Transformer properties (voltage magnitude and phase shifting)

* Shunts (line-charging)

e All are configurable!
Skm =
(Gik — 3Bir) |Vil® + (Gim — §Bim) |Vi||Vin| (cos Orm + j sin Oxm)

Example: impedance correction for transformers \
Inversely proportional to:

/S

S DN 4 GUROB]
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Feature: contingencies

¥ GUROBI
[~
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Related feature: penalized slacks

The nominal optimization problem includes nonlinear equations.
e Typical example: load balance equations.
* Nonlinear solvers are unlikely to satisfy these exactly.
 What would that mean in terms of the application? Insufficient or excessive energy.
* Infact, it is unlikely that loads will be known exactly at the time of the computation.
* And even if known, they will change shortly after.
 How does the grid even work???
* Reserves and real-time balancing take care of mismatches.
* Power mismatches sensed through AC grid physics.

GO competition: allow small errors, but penalize them in the objective. ‘ GUROBI
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Basic approach:
1. Dimensionality reduction

e Fact: real-world power systems are very robust

e Transition from previous solution, to base solution
should require minor adjustments

e Transition from base solution, to contingency solutions
should require minor adjustments

2. Progressive rounding
Common-sense iterative rounding of integer variables —
all integer variables modeled as sum of binaries

3. Numerical stability
Some numerical parameters in GO setup are too large.
Slack penalty function in particular. Replaced with simple linear penalty
plus bounds. P
GUROBI
2\
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Dimensionality reduction

Example: transition from previous solution, to base solution

e Most changes in data from previous network, to new one, involve changes
in demands

e Most demand changes are very small
e What we did:

1. Select a subset S of buses with large enough demand changes

2. Restrict changes in prior solution to buses that are electrically close
enough to S

3. Apply our rounding heuristic to the correspondingly restricted ACOPF
problem



NO6100 scenario 115

6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

About 100,000 variables and constraints

Picture shows buses where prior solution has infeasibility greater than 1e-3: about 200

37, 0bj=712281.64
“,& 54 total_bus_cost 1.85847217e-02
\ R e e DR .
e xS =%‘g’(&&z€ﬂ§~?\-:‘;_’,& ¥ total_load_benefit 1.26257799e+06
Tl 7 \\___‘,( S es AEees e N total_gen_cost 5.50296330e+05
AT f e .
Jﬁ\::&é:,\.t%ﬁ@;%%gﬁ@ q‘-’ %} total_line_cost 0.00000000e+00

‘ R LN e A total_xfmr_cost 0.00000000e+00
VR . .2 7 '-‘\{?\, '& L A
‘e N \ \K‘ z% SR AL
T N 7 BANS 7.
A7 it GOSN PD
g -

S
b o My ST S P )
Ay S, WL .
AL %‘%@f?ﬂ%' (Knitro feaserror 2.481e-09)
- 2 A % o2 & e

169.05 sec 450 iterations
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NO6100 scenario 115

6476 buses, 3371 loads, 406 generators, 5337 lines, 3086 transformers, 2467 contingencies

Contingency 3 (line down)

/’\,\t’ e
.-w Ry N )
,;‘,:4?“”

t“.‘ ; \\
g g;, ? ’

 Base caseobj: 712281.64

<"‘ 6’
l ‘A .é‘\ ‘%‘,b‘ . . .
i ¢,,"~“‘5:{wi," & o * Heuristic solution:
$ ‘3‘\ %}g Qﬁ*’"@" ~=.\- e ¢ W37 NS
*{\ Q “\Q‘v *;-;-‘.:%5’“ '* ST R TR total_bus_cost 1.65362151e-02
DA 3?'\"“@@ S MRS total_load_benefit 1.25961077e+06
V] 5y '”\\' 3 it L~i';"\ 2S5 S ,'h'
& i \;:"g:" W ’--:-x. N total_gen_cost 5.44767392e+05
Q"" 'VA AN

total_line_cost 0.00000000e+00

l’; le n\‘

% r <..7 PN _‘_ total_xfmr_cost 0.00000000e+00
'. 7% w‘*a%cﬂ Siks
Jgt;‘\ ,25 /-f'f SIMR S Vs
W'ﬂ)‘r"'i**" “""”’Vﬁﬁ"'}"’%”‘i bjective 714843.36
*ﬁz‘f"!m }‘ﬂr’lg“"e@% ;‘3'25,'%% 4 objective .
A R ",n'.;; A )'A .'A;, 7‘(;‘\{? ‘:‘E*'f,:?:"; ‘E; ;
o ”jési?ﬁss NG
,5. 15’“'«;.3?’3 '3’\_»,"\ 31.30 seconds 227 iterations
" o //,, 2 + 6.8 seconds + 27 iterations (rounding)
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Moving forward ...

1. Heuristics for finding feasible solutions for ACOPF that do not rely on
interior point methods. Existing generic heuristics do not work (well, or at
all). LP-based heuristics would be ideal.

2. ACOPF in energy markets. Current power grid operations are supported by
the day-ahead, or SCUC (Security-Constrained Unit Commitment)
computation. This a large-scale, mixed-integer, multiple scenario problem. It
is linear — using the (linear) DC approximation to ACOPF. Moving forward, it
is expected that the AC power flow model will become more prevalent. GO3
competition points in that direction.

&
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ACOPF Gurobi Optimod

Published last week: #T-optimization-
J0CS-
table/mods/opf/opf.html ‘ GUROBI
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OPTIMIZATION SUCCESS STARTS HERE
Special opportunities for the academic community:

« Gurobi: Always free for academics
» Gurobi user community page

 Educational Resources:

Gurobi is also available to

recent graduates through
our Take Gurobi With
You Program

Email to learn more.

www.BurritoOptimizationGame.com
BURRITO"

OPTIMIZATION GAME
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QUESTIONS?

Thank You

For more information: gurobi.com

Dr. Daniel Bienstock
Columbia University

daniel bienstock@gurobi.com

© 2023 Gurobi Optimization, LLC. Confidential, All Rights Reserved



