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Diving Deeper into the AC Optimal Power Flow Problem and Showcasing 
the New Power Flow OptiMod Python Optimization Use Case



Once again: Practical Optimization at a Crossroads

• Current and past areas of interest:  logistics, transportation, supply chain, advertising, 
pricing, yield management, market analytics, mechanism design, ...

• These areas will remain relevant, but …

• The future: heavy engineering, hard science.

• Very nonlinear, complex models that embody hard, inflexible rules.

• Very large scale, high level of modeling detail, myriad details in complex systems.

• Demanding performance requirements: must get good solutions fast.

• Traditional optimization and Operations Research must have a stake in this domain.



Outline For This Talk

• Review of basic AC and DC Optimal Power flow.

• Relaxations and linear relaxations* – computational experiments!   *

• GO competitions run by the Department of Energy.   *

• Gurobi Optimods demonstration.  *

* = new content as compared to first webinar



Cost incurred at generators





Admittance matrix for line km
Complex current

Ohm’s Law

Ikm Imk

Skm  != -Smk

Skm Smk

Complex power

Skm =    50.0 + 20.0 j
Smk =  - 49.9 – 21.02 j
i.e.,
Complex power arriving at m =
-Smk =   49.9 + 21.02 j
0.1 loss in active power
1.02 gain in reactive

Vk    Vm



LHS = complex power injected into grid at k

Total real (“active”) power generated at k

Real power demand at k

“Reactive” power generation/demand at k



Basic ACOPF



But there is an equivalent formulation as a 
QCQP

(Quadratically Constrained Quadratic Program)

Admittance matrix for line km

Use rectangular coordinates for voltages



ACOPF as a QCQP 

Use rectangular coordinates for voltages

Imaginary (“reactive”) part

Real (“active”) part



A common simplification: the DC approximation



DC approximation



ACOPF as a QCQP
(Quadratically Constrained Quadratic Program)

Admittance matrix for line km

Use rectangular coordinates for voltages

complex power injected into km at k



Solving convex relaxations of ACOPF

• McCormick relaxation

• Spatial branching

• Outer approximation of convex quadratics

• Cuts



McCormick relaxation - an important workhorse
Suppose a formulation has a bilinear expression,  xy   

Then:  introduce a new variable, w.  Convex hull of all points (x,y,w} provided by under/over estimators

            

                                                                                                                                
(source: Wikipedia)

In formulation, replace each occurrence of xy with the variable w.
And write the four inequalities involving w, x and y.

Works well in tandem with spatial branching.



Spatial branching

• An adaptation of classical branch-and-bound.

• Example: suppose that we have a variable x with 
       Suppose that the solution to a relaxation has x = 0.65

• Then we branch:               
• Branch 1:

• Branch 2:

• McCormick inequalities tightened in both branches.



Outer envelope approximation of convex quadratics

 Why needed? 

Potential pitfalls:

• Many cuts may be needed to accurately approximate a 
quadratic.

• Cuts may be nearly parallel
• Many quadratics may need to be accurately approximated 

• We may succeed in revealing a global feature, at a cost

• Consequently, the resulting linearly constrained problem 
may prove challenging



And how well does spatial branching work on ACOPF?

Case Root relaxation 300 seconds Interior Point 
Knitro

Interior point 
time (s)

9 2264.30 5301.40* 5296.69 0.24

30 0.00 154.08 576.89 0.47

118 0.00 0.00 129660.69 0.24

1354pegase 23037.69 23037.69 74069.35 2.45

ACTIVSg2000 649917.91 649917.91 1228892.08 3.01

Why is lower bound so bad?
(Gurobi 10 on QCQP) 

How about upper bounds … using spatial branching?



A critical observation

New variables can be related to rectangular coordinates for voltages

Real (“active”) part

Introduce new variables:

And! Jabr inequality







We can see an improvement
Case Jabr relaxation value Relaxation time (s) Interior point value Interior point time (s)

9 5296.67 0.00 5296.69 0.24

30 573.58 0.03 576.89 0.47

118 129297.41 0.32 129660.69 0.24

1354pegase 740092.83 2.02 74069.35 2.45

ACTIVSg2000 1226328.77 4.29 1228892.08 3.01

3120sp 2130950.72 53.01 2142703.77 5.24

9241pegase 309238.37 31.00 315912.43 161.29

9241pegase
Jabr + non-convex

84371.82 Root time: 400 s

ACTIVSg10k 1337732.48
premature termination

64.00
Ten cores

2485898.75 223.88
Two cores

13659pegase 361664.26
premature termination

59.00
Ten cores

386107.52 228.02
Two cores

Why this behavior?(Gurobi 10 on SOCP,   Knitro from Matlab as interior point solver) 



Lessons to learn (so far)

• Large SOCP relaxations are difficult for our solvers.  Why?

• Many of the Jabr (SOC) constraints are tight at optimum – they are needed.
• Outer approximations, if accurate, require many linear inequalities.
• All are needed, or else relaxation inaccurate.
• If too many outer envelop inequalities are used, relaxation becomes hard.

• A challenge for spatial branch-and-bound: 
• Either start from weak relaxation, or use a very heavy formulation at every node
• A challenge for heuristics

• What is needed?   An effective, compact linear relaxation.





Another critical observation

Real (“active”) part:

Observation:

Using this inequality, and foregoing the (rotated cone) Jabr ineq., already yields a very tight relaxation (linear?)

(+ G. Munoz, 2014)





The almost linear formulation (gray = conic)
Case relaxation Relax time (s) Interior Point IPM time (s)

1354pegase 730269.92 
740092.83 

0.81 
2.02

74069.35 2.45

ACTIVSg2000 1201333.04 
1226328.77 

1.93 
4.29

1228892.08 3.01

3120sp 2061763.91
2130950.72

2.60 
53.01

2142703.77 5.24

3375wp 7267498.66
7393015.73

2.00
5.00

7412072.19 5.66

6468rte 84117.84
unable to converge

2.29
48.00

unable to converge long

9241pegase 304392.01
309238.37

7.32 
31.00

315912.43 161.29

ACTIVSg10k 2364513.20
unable to converge

7.23
146.94

2485898.75 129.54

13569pegase 372046.88
unable to converge

6.98
76.00

386107.52 320.00

ACTIVSg25k 5802299.18
unable to converge

125
332

6017830.61 86.07

ACTIVSg70k 15305723.20
 unable to converge

162.10
684.05

16439499.87 450.55



implies

So:

Lemma: this implies source-destination flow paths

Every unit of load is accounted for by a unit of 
generation



Flow decomposition



(physics)

(more physics)

(Castillo et al, Coffrin et al)

but don’t: we do not want too many tight SOC constraints

(for example)



LP-based cutting plane algorithm

Outline

• Start from basic formulation (an LP?).

• Iterate:
• Solve linearly constrained problem.
• Separate outer-envelope cuts for Jabr constraints (within tolerance).
• Separate outer-envelope cuts for I2 constraints (within tolerance).
• Discard old enough cuts, if slack enough.
• Reject new cuts if too parallel to existing cuts.

Matias Villagra (PhD student)

Cut management



LP-based cutting plane algorithm: details

• Start from basic formulation.

• Iterate: 
• Solve linearly constrained problem.
• Compute the top 55% most violated Jabr-envelope cuts in current solution.
      Add cuts if non-parallel.
• Compute  the top 15% most violated i2-envelope cuts in current solution.
      Add cuts if non-parallel.
• Discard old  (5 or more iterations) cuts which are slack (violation > 1e-5).

Matias Villagra (PhD student)



Performance of cutting-plane Algorithm (gray = Gurobi on conic)
Case Cutting-plane Time (s) Log barrier Log barrier time (s)

1354pegase 74000.3 
74006.95 

3.68 
1.20

74069.35 2.45

ACTIVSg2000 1225960 
1226328.77 

6.52 
4.29

1228892.08 3.01

2869pegase 133863
133875.022

16.51 
2.61

133999.29 2.99

3120sp 2131250
unable to converge

5.5
2.82

2142703.77 5.24

3375wp 7393140
unable to converge

25.13
5.21

7412072.19 5.66

9241pegase 309297 
309040.38

67.55 
13.20

315912.43 161.29

ACTIVSg10k 2471240
unable to converge

16.31
20.20

2485898.75 129.54

13569pegase 379167
unable to converge

79.88
34.46

386107.52 320.00

ACTIVSg25k 5979740
unable to converge

51.32
61.11

6017830.61 86.07

ACTIVSg70k 16300200
 unable to converge

205.9
282.29

16439499.87* 450.55

Gurobi parameters: method = Barrier, BarHomogeneous = 1, NumericFocus = 1, BarConvTol = 1e-6, FeasibilityTol = 1e-6, OptimalityTol = 1e-6
Knitro used as interior point solver.



Finding feasible solutions: the GO2 competition
• Whereas developing strong relaxations is important from a fundamental standpoint …
 the industry is focused on computing good solutions, fast enough.

• The GO (Grid Optimization) Competition has been run by the U.S. Department of Energy 
for several years.

• It is currently in its third iteration, or “Challenge”.

• Here we will talk on our experience in Challenge 2 (with Richard Waltz, Knitro/Artelys).
      We placed #2.  The winner was Hassan Hijazi (LANL).

• All competitions have focused on finding good solutions within time limits.

• Many important industry features that go beyond standard ACOPF.

• One particular feature is especially relevant …



Admittance matrix for line km
Complex current

Ohm’s Law

Ikm Imk

Skm Smk

Complex power

Feature:  configurable admittance matrices
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Feature:  configurable admittance matrices

Admittance matrices include information about physical attributes such 
as:

• Pure impedance (resistance and reactance)

• Transformer properties (voltage magnitude and phase shifting)

• Shunts (line-charging)

• All are configurable!

Example:  impedance correction for transformers

Inversely proportional to:



Feature:  contingencies

Optimization problem (in GO2) seeks a minimum-cost solution.  However,

• This solution corresponds to operation under a “base case”

• But this solution must survive a number of contingencies

• Each contingency corresponds to losing a branch or a generator

• Definition of survivable: we must be able to reset variables, within bounds, so as to 
become feasible or nearly feasible

• We pay a penalty for each infeasibility

• Total score: value of base-case solution + average continency penalty

• Thousands of contingencies

• Industry standard:  “N-1” criterion



Related feature:  penalized slacks

The nominal optimization problem includes nonlinear equations. 

• Typical example: load balance equations.

• Nonlinear solvers are unlikely to satisfy these exactly.

• What would that mean in terms of the application?  Insufficient or excessive energy.

• In fact, it is unlikely that loads will be known exactly at the time of the computation.

• And even if known, they will change shortly after.

• How does the grid even work???

• Reserves and real-time balancing take care of mismatches.

• Power mismatches sensed through AC grid physics.

• GO competition: allow small errors, but penalize them in the objective.



Most important feature:  the prior solution

ACOPF problems, in the real-world are never rarely run “from scratch”.

• Rather, they are run with a prior solution vector available.

• This vector corresponds to a solution previously (recently) computed for a prior 
(recent) data realization.  

• Examples: some loads have changed (a bit).  A few generators may be turned off, and 
a few, turned on.  Some branches may be turned off/on.

• The total change will not be large.

• New solution amounts to a migration from the prior solution.  The migration is 
constrained.

• Can we take this information into account, in computing a new solution?

• YES!



How do we find solutions?

Today, there is no question as to what kind of algorithm to use in order to compute 
solutions: interior-point methods.  Knitro, IPOPT, a few others.

• Several closely related methodologies based on nonlinear programming.

• Incredibly effective for ACOPF.  Very flexible.  There is no competition.  

• But …

• Interior point methods are “local solvers”.

• There is no guarantee of … anything, basically.

• On very large models arising from the GO competition, the algorithms need a lot of 
help from heuristics.

• In the next few slides, we will discuss what we (R. Waltz and I) did, using Knitro.









GO2-competition:  heuristics



Moving forward …

1. Heuristics for finding feasible solutions for ACOPF that do not rely on 
interior point methods.   Existing generic heuristics do not work (well, or at 
all).  LP-based heuristics would be ideal.

2. ACOPF in energy markets.  Current power grid operations are supported by 
the day-ahead, or SCUC (Security-Constrained Unit Commitment) 
computation.  This a large-scale, mixed-integer, multiple scenario problem.  It 
is linear – using the (linear) DC approximation to ACOPF.    Moving forward, it 
is expected that the AC power flow model will become more prevalent.  GO3 
competition points in that direction.
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ACOPF Gurobi Optimod

Published last week: https://gurobi-optimization-
gurobi-optimods.readthedocs-
hosted.com/en/stable/mods/opf/opf.html



GUROBI: ALWAYS FREE FOR ACADEMICS
& RECENT GRADUATES

• Gurobi: Always free for academics

• Gurobi user community page

• Educational Resources:

• www.gurobi.com/academia

Email academicprogram@gurobi.com to learn more.

OPTIMIZATION SUCCESS STARTS HERE
Special opportunities for the academic community: 

TAKE GUROBI
WITH YOU

Gurobi is also available to 
recent graduates through 
our Take Gurobi With
You Program

Introducing: www.BurritoOptimizationGame.com
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For more information: gurobi.com

Dr. Daniel Bienstock
Columbia University

daniel.bienstock@gurobi.com

Thank You

QUESTIONS?


