
Rodrigo Fuentes
Sr. Technical Account Manager

Gurobi Connect Chicago

Advanced Modeling

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Agenda

Gurobi Python Extensions

Advanced Modeling Features
• Range constraints
• Non-linear functions
• Special Ordered Sets
• General constraints
• Logical conditions
• Semi-continuous variables
• Selecting Big-M values

Multiple Objectives

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

Gurobi Python Extensions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

• Python provides data structures that are well-suited for deploying optimization models:
• Tuples
• Lists
• Sets
• Dictionaries

• On top of that, gurobipy also offers a few data structures that allow you to build subsets from a
collection of tuples efficiently:
• Tuplelists
• Tupledicts
• Multidicts

Python data structures and Gurobi extensions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

Tuple
A tuple is an ordered, compound grouping that
cannot be modified once it is created. It is ideal
for representing multi-dimensional subscripts.

List
A list is an ordered group, so each item is
indexed. Lists can be modified by adding,
deleting or sorting elements.

Set
A set is an unordered group. As such, sets can
only be modified by adding or deleting
elements. Unlike lists, sets cannot have
repeated elements.

Dictionary
A dictionary is a mapping from keys to values
that is ideal for representing indexed data, e.g.
cost, demand, capacity, etc. Typically strings,
numbers, and tuples are used as keys, which
should be unique.

Already available structures in python

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 6

mytuple = ('truck22','truck37') # create
print(mytuple[0]) # access

mylist = ['truck22', 'truck37', 'truck53'] # create
print(mylist[1]) # access

myset = {'truck22', 'truck37', 'truck53'}
for item in myset:
 print(item)

demand = {
 'demand4': 20,
 'demand22': 40,
}
print(demand['demand22’])

Tuplelist
This is Gurobi's extension of a Python list to efficiently build sub-lists from a list of tuples.

Tupledict
This is Gurobi's extension of a Python dictionary for creating subsets of Gurobi variable objects. The keys of a tupledict are
stored as a tuplelist, which enables the efficient creation of math expressions that contain a subset of matching variables by
using methods like tupledict.select(), tupledict.sum() or tupledict.prod().

Gurobipy Data Structures

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 7

mytuplelist = gp.tuplelist([
 ("demand4", "truck22"), ("demand4", "truck37"), ("demand4", "truck53"),
 ("demand22", "truck22"),])
print(mytuplelist[2]) # = ('demand4', 'truck53') (tuple)
print(mytuplelist.select("demand4","*")) # Prints all tuples with 'demand4'

assign = model.addVars(expertise, name="assign") # returns a tupledict
supply = model.addConstrs((assign.sum(r, "*") == 1 for r in resources))

Multidict
As its name implies, multidict is a convenience function to define multiple dictionaries (each one with the same set of keys)
and their indices in one statement. Specifically, the input consists of a Python dictionary with lists of the same length as the
values associated with the keys. The first output of this function is a tuplelist, and the rest are tupledicts.

Gurobipy Data Structures

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 8

building_truck_spot_pairs, distance, scaled_demand = gp.multidict({
 ('demand4', 'truck11'): [112.7, 20],
 ('demand4', 'truck10'): [149.3, 15],
 ('demand22', 'truck11'): [155.7, 10]
})
print(scaled_demand.sum('*','truck11')) # = 30

building_truck_spot_pairs = [('demand4', 'truck11’), ('demand4', 'truck10’), ('demand22', 'truck11’)] # tuplelist of keys to
multidict

distance = {('demand4', 'truck11'): 112.7, #tupledict
 ('demand4', 'truck10'): 149.3,
 ('demand22', 'truck11'): 155.7 }

scaled_demand = {('demand4', 'truck11’): 20,
 ('demand4', 'truck10'): 15,
 ('demand22', 'truck11'): 10 }

1 dimensional
item here, but

could be tuple of
arbitrary

dimension

A Gurobi class to store lists of tuples

What makes it special: select() statement for efficient filtering

The tuplelist is indexed to make select() efficient
Each select() call returns a tuplelist

Gurobi tuplelist

for c in Cities: # [('A','B'), ('A','C')]
print(Routes.select(c,'*')) # [('B','C'), ('B','D')]

[('C','D')]
[] No routes with D as origin

>>> import gurobipy as gp
>>> from gurobipy import GRB
Cities = ['A','B','C','D']
Routes = gp.tuplelist([('A','B'), ('A','C'), ('B','C'), ('B','D'), ('C','D')])

Using integers

Using lists of scalars

Using a tuplelist

Using a generator expression

Indexed variables: Model.addVars()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 10

x = model.addVars(2, 3, name="x")
x[0,0], x[0,1], x[0,2], x[1,0], x[1,1], x[1,2] (variable names)

y = model.addVars(Cities, Cities, name="y")
y[A,A], y[A,B], y[A,C], y[A,D], y[B,A], y[B,B], y[B,C], y[B,D]
y[C,A], y[C,B], y[C,C], y[C,D], y[D,A], y[D,B], y[D,C], y[D,D]

z = model.addVars(Routes, name="z") # z[A,B], z[A,C], z[B,C], z[B,D], z[C,D]

w = model.addVars((i for i in range(5) if i != 2), name="w")
w[0], w[1], w[3], w[4]
w = 0: <gurobi.Var w[0]>, 1: <gurobi.Var w[1]>, 3: <gurobi.Var w[3]>, 4: <gurobi.Var w[4]>}
tupledict with indices as keys and variables as value

0 1 2

0 (0,0) (0,1) (0,2)

1 (1, 0) (1,1) (1,2)

Automatically takes the cross-product of multiple indices

addVars call with vs without provided “name”, generates names automatically, using the indices:

More about Model.addVars()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

x = model.addVars(2, 3, name="x")
y = model.addVars(Cities, Cities, name="y")

name="x":

{(0, 0): <gurobi.Var x[0,0]>,
(0, 1): <gurobi.Var x[0,1]>,
(0, 2): <gurobi.Var x[0,2]>,
(1, 0): <gurobi.Var x[1,0]>,
(1, 1): <gurobi.Var x[1,1]>,
(1, 2): <gurobi.Var x[1,2]>}

no name specified:

{(0, 0): <gurobi.Var C0>,
(0, 1): <gurobi.Var C1>,
(0, 2): <gurobi.Var C2>,
(1, 0): <gurobi.Var C3>,
(1, 1): <gurobi.Var C4>,
(1, 2): <gurobi.Var C5>}

Recall

Can use a generator expression to build constraints

Indexed constraints: Model.addConstrs()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 12

Routes = tuplelist([('A','B'), ('A','C'), ('B','C'), ('B','D'), ('C','D')])

x = model.addVars(Routes, name="x")
y = model.addVars(Routes, name="y")
model.addConstrs((x[i,j]+y[i,j] <= 2 for i,j in Routes), name="capacity")

{('A', 'B'): <gurobi.Constr capacity[A,B]>,
('A', 'C'): <gurobi.Constr capacity[A,C]>,
('B', 'C'): <gurobi.Constr capacity[B,C]>,
('B', 'D'): <gurobi.Constr capacity[B,D]>,
('C', 'D'): <gurobi.Constr capacity[C,D]>}

Summary: variable and constraint indices are keys in a tupledict, with the actual
constraints and variables being the associated values

Linear and quadratic expressions are used in constraints and the objective
• Basic (binary) mathematical operators (+ − × ÷)
• Aggregate sum operator (∑)

Used alone as well as in products (dot product)

Operators and Python

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

A tupledict of variables has a sum() function, using the same syntax as tuplelist.select():

This generates the constraints:

Aggregate sum: using tupledict.sum()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 14

x = model.addVars(3, 4, vtype=GRB.BINARY, name="x")
model.addConstrs(x.sum(i,'*') <= 1 for i in range(3))

x[0,0] + x[0,1] + x[0,2] + x[0,3] <= 1
x[1,0] + x[1,1] + x[1,2] + x[1,3] <= 1
x[2,0] + x[2,1] + x[2,2] + x[2,3] <= 1

Use generator expression inside a quicksum() function

Note:
quicksum() works just like Python’s sum() function, but it is more efficient for optimization
models.

Aggregate sum: using quicksum()

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 15

obj = quicksum(cost[i,j] * x[i,j] for i,j in Routes)

A tupledict of variables has a prod() function to compute the dot product.

If cost is a dictionary, then the following are equivalent:

Another example:
x = m.addVars([(1,2), (1,3), (2,3)])
coeff = dict([((1,2), 2.0), ((1,3), 2.1), ((2,3), 3.3)])
expr = x.prod(coeff) # LinExpr: 2.0 x[1,2] + 2.1 x[1,3] + 3.3 x[2,3]
expr = x.prod(coeff, '*', 3) # LinExpr: 2.1 x[1,3] + 3.3 x[2,3]

Dot product

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16

obj = quicksum(cost[i,j] * x[i,j] for i,j in arcs)

obj = x.prod(cost)

Takes the keys in coeff, multiplies the
associated values by the values in x
corresponding to the same keys.

Support NumPy’s ndarrays and scipy.sparse matrices as input
• More convenient if the underlying model is naturally expressed with matrices
• Faster because no modeling objects for individual linear expressions are created

Add matrix variables

Add matrix constraints

Add regular constraints with overload operator

Set a quadratic objective function

Matrix API (since 9.0)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 17

model.addMConstr(A, x, sense, b)

x = model.addMVar(shape)

model.setObjective(x @ Q @ x)

model.addConstr(A @ x <= b)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 18

Advanced Modeling Features

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 18

Many models contain constraints like:
𝐿 ≤ ෍

௜

𝑎௜𝑥௜ ≤ 𝑈

These can be rewritten as:
𝑟 + ෍

௜

𝑎௜𝑥௜ = 𝑈

0 ≤ 𝑟 ≤ 𝑈 − 𝐿

The range constraint interface automates
this for you
• model.addRange(. , 𝐿, 𝑈, “range0”)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

If you need to modify the range
• Retrieve the additional range variable,

named RgYourConstraintName
• Modify the bounds on that variable

For full control, it may be easier to model
this yourself.

• Useful for efficient
deactivation/reactivation of constraints
in the model
• Set infinite bounds on r to deactivate

Background

Range constraints

General Constraints for popular logical expressions
• Absolute value
• Min/Max value
• And/Or over binary variables
• Indicator (if-then logic)

The General Constraint syntax is a safe way to implement model logic.

Coming Up:
• How do these logical expressions work?
• How to build models with complex logic?

Background

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 20

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 21

Models with convex regions and convex
functions are generally much easier to solve

Background

Convexity (or not)

Special Ordered Set of type 1 – at most
one variable may be ≠ 0 in a solution:

SOS1 (𝑥1, ⋯ , 𝑥௡)

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 22

Special Ordered Set of type 2 – an
ordered set where
• At most two variables may be ≠ 0 in a

solution
• Non-zero variables must be adjacent

SOS2 (𝑥1, ⋯ , 𝑥௡)

Background

Special Ordered Sets

Variables do not need to be integer.

Simply substitute if absolute value function creates a convex model

Absolute value – Convex case

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 23

What about
x_p = 6, x_n
= 4, x = 2, z

= 10?

Primal
argument: 4

variables
away from

their
bounds, but
only room

for three
basic

variables

Dual argument: solution is
feasible but not optimal,
any optimal solution has

either x_p or x_n = 0

min 𝑧
 z = 𝑥௣ + 𝑥௡
 x = 𝑥௣ − 𝑥௡
<lin constraints, some with
x>
x free, z, 𝑥௣, 𝑥௡ ≥ 0

min |𝑥|
 <linear constraints, some with x>
x free

|𝑥|

𝑥

Use indicator variable and arbitrary big-M value to prevent both 𝑥_𝑝 and 𝑥_𝑛 positive

Q: Any ideas on how to model this if no reasonable, finite big-M exists (ex: |x| can be infinite)?

Absolute value – Non-convex case

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 24

Can’t rely on dual
argument to force

x_p or x_n to 0

Need some
logic instead

|𝑥|

𝑥

max 𝑧
 𝑧 = 𝑥௣ + 𝑥௡
 𝑥 = 𝑥௣ − 𝑥௡

<linear constraints, some with x>

x free, z, 𝑥௣, 𝑥௡ ≥ 0

max |𝑥|
 <linear constraints, some with x>
 x free

𝑥௣ ≤ 𝑀𝑦
𝑥௡ ≤ 𝑀(1 − 𝑦)
𝑦 ∈ 0,1 ,

= 𝑥௣ + ∆ − (𝑥௡ + ∆)

Use SOS-1 constraint to prevent both 𝑥_𝑝 and 𝑥_𝑛 positive

• No big-M value needed
• Works for both convex and non-convex version

• No branching needed in the convex case

Q: Which formulation performs better?

Absolute value – SOS-1 constraint

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 25

max |𝑥|
 <constraints, some with x>
 x free

max 𝑧
 𝑧 = 𝑥௣ + 𝑥௡
 𝑥 = 𝑥௣ − 𝑥௡
𝑥௣, 𝑥௡ ∈ SOS1
<constraints, some with x>
x free, z, 𝑥௣, 𝑥௡ ≥ 0

Which LP relaxation is stronger?

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 26

max 𝑧
 𝑧 = 𝑥௣ + 𝑥௡
 𝑥 = 𝑥௣ − 𝑥௡
𝑥௣, 𝑥௡ ∈ SOS-1
<constraints, some with x>
x free, z, 𝑥௣, 𝑥௡ ≥ 0

max 𝑧
 𝑧 = 𝑥௣ + 𝑥௡
 𝑥 = 𝑥௣ − 𝑥௡
𝑥௣ ≤ 𝑀𝑦
𝑥௡ ≤ 𝑀(1 − 𝑦)
<constraints, some with x>
x free, 𝑦 ∈ 0,1 , z, 𝑥௣, 𝑥௡ ≥ 0

𝑧

M-M

MIP feasible
region

LP relaxation
feasible
region

𝑧

𝑥𝑥
M*-M*

Binary variables are better
if modest M is known (or

can be derived from
model).

SOS is better,
avoiding bad

numerics, if M has to
be arbitrarily large.

SOS advantages
• Always valid (no reasonable M in some cases)
• Numerically stable; no large M values

SOS constraints are handled with branching
rules (not included in LP relaxation)

Gurobi will try to reformulate SOS constraints
into a big-M representation during presolve

• Gurobi’s presolve has very powerful bound
strengthening features that can reduce the
largest big-M

• User has control over this behavior with
PreSOS1BigM and PreSOS2BigM
parameters

• This sets a limit on the largest big-M
necessary

SOS constraints vs
big-M representation

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 27

Big-M advantages:
• LP relaxation is tighter
• Typically results in better performance for

Gurobi's algorithms as long as M is relatively
small

• LP relaxation weakens as M increases
• Formulations are equivalent if M is infinite

Generalization of absolute value functions

Convex case is “easy”
• Function represented by LP

Non-convex case is more challenging
• Function represented as MIP or SOS-2 constraints

Gurobi has an API for piecewise linear objectives (and constraints with 9.0)
• Built-in algorithmic support for the convex case (objective)
• Conversion to MIP is transparent to the user

Q: What are some potential applications?

Piecewise linear functions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 28

Piecewise linear functions appear in models all the time
• Fixed costs in manufacturing due to setup
• Economies of scale when discounts are applied after buying a certain number of items
• …

Also useful when approximating non-linear functions
• More pieces provide for a better approximation
• Trade-off between performance and exactness

Examples:
• Unit commitment models in energy sector
• Pooling problem
• Trigonometric, logarithmic and other nonlinear univariate functions

Piecewise linear functions – Applications

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 29

Gurobi versions >= 9.0 can
handle the nonconvex

quadratic pooling
constraints explicitly

Gurobi versions >= 11.0
can handle selected
univariate nonlinear
functions explicitly

Only need to specify function breakpoints
• No auxiliary variables or constraints necessary

Python example:

𝑥 must be non-decreasing
• Repeat 𝑥 value for a jump (or discontinuity)

Piecewise linear functions – API

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 30

model.setPWLObj(x, [1, 3, 5], [1, 2, 4])
model.addGenConstrPWL(x, y, xpts, ypts, "gc")

Let (𝑥௜, 𝑦௜) represent 𝑖௧௛ point in piecewise linear function
To represent 𝑦 = 𝑓(𝑥), use:

𝑥 = ෍
௜

𝜆௜𝑥௜

𝑦 = ෍
௜

𝜆௜𝑦௜

෍
௜

𝜆௜ = 1

𝜆௜ ≥ 0, SOS2
SOS-2 constraint is redundant if 𝑓 is convex.

Piecewise linear functions – SOS-2 constraint

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 31

(𝑥ଵ, 𝑦ଵ)

(𝑥଴, 𝑦଴)

(𝑥ଶ, 𝑦ଶ)

(𝑥ଷ, 𝑦ଷ)

It is easy to minimize the largest value (minimax) or maximize the smallest value (maximin):

Example: minimizing completion time of last job in machine scheduling application

Min/max functions – Convex case

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 32

min max
i
xi{ } min z

z ⇡ xi " i

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ

𝑧

Harder to minimize the smallest value (minimin) or maximize the largest value (maximax)
• Use multiple indicator variables and a big-M value

Min/max functions – Non-convex case

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 33

min min
i
xi{ }

min z
z ⇡ xi - M (1 - yi)
yi

i
å =1

yi Î {0, 1}

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ

𝑧

Only one of
the

constraints is
binding

What is the
smallest value

of M that
doesn’t

compromise
the meaning of

the model?

Function type Function Python syntax

Minimization 𝑦 = min 𝑥ଵ, 𝑥ଶ, 𝑥ଷ addGenConstrMin(y, [x1,x2,x3])

Maximization 𝑦 = max 𝑥ଵ, 𝑥ଶ, 𝑥ଷ addGenConstrMax(y, [x1,x2,x3])

Absolute value 𝑦 = |𝑥| addGenConstrAbs(y, x)

General Constraints for Logical Expressions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 34

Note:
General constraints are also available for C, C++, Java, .NET, and R; we use
Python syntax simply for illustration.

And
𝑥ଵ = 1 ∧ 𝑥ଶ = 1

Or
𝑥ଵ = 1 ∨ 𝑥ଶ = 1

Exclusive Or (not both)
𝑥ଵ = 1 xor 𝑥ଶ = 1

At least/at most/counting
𝑥௜ = 1 for at least/most 3 𝑖

If-then (implication)
if 𝑥ଵ = 1 then 𝑥ଶ = 1

Logical conditions on binary variables

x1 + x2 = 2

x1 + x2 ⇡ 1

x1 + x2 =1

xi
i
å ⇡ 3

x1 £ x2
© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 35

And
𝑦 = (𝑥ଵ ∧ 𝑥ଶ)

Or
𝑦 = (𝑥ଵ ∨ 𝑥ଶ)

Exclusive Or (not both)
𝑦 = (𝑥ଵ xor 𝑥ଶ)

Logical conditions – Variable result

y £ x1
y £ x2
y ⇡ x1 + x2 - 1

y ⇡ x1
y ⇡ x2
y £ x1 + x2

y ⇡ x1 - x2
y ⇡ x2 - x1
y £ x1 + x2
y £ 2 - x1 - x2

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 37

In other words,
𝑦 = 𝑥ଵ ∗ 𝑥ଶ

In other words,
𝑦 = |𝑥ଵ − 𝑥ଶ|

y true when x1 or x2 true

y false when x1 and x2 false

y false when x1 and x2 true

Function type Condition Python syntax

And y = (x1 = 1 ∧ x2 = 1) addGenConstrAnd(y, [x1,x2])

Or y = (x1 = 1 ∨ x2 = 1) addGenConstrOr(y, [x1,x2])

General Constraints for Logical Expressions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 38

Note:
General constraints are also available for C, C++, Java, .NET, and R; we use
Python syntax simply for illustration.

• Add indicator variables for each constraint
• Enforce logical conditions via constraints on indicator variables
• And constraints

• Just add the individual constraints to the model

• All other logical conditions require indicator variables

Overview

Logical conditions on constraints

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 39

෍
௜

𝑎ଵ௜𝑥௜ ≤ 𝑏ଵ

and

෍
௜

𝑎ଶ௜𝑥௜ ≤ 𝑏ଶ

Use indicator for the satisfied constraint, plus big-M value:

Logical conditions on inequalities – Or

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 40

෍
௜

𝑎ଵ௜𝑥௜ ≤ 𝑏ଵ

or

෍
௜

𝑎ଶ௜𝑥௜ ≤ 𝑏ଶ

or

෍
௜

𝑎ଷ௜𝑥௜ ≤ 𝑏ଷ

෍
௜

𝑎ଵ௜𝑥௜ ≤ 𝑏ଵ + M 1 − yଵ

෍
௜

𝑎ଶ௜𝑥௜ ≤ 𝑏ଶ + M(1 − yଶ)

෍
௜

𝑎ଷ௜𝑥௜ ≤ 𝑏ଷ + M 1 − yଷ

𝑦ଵ + 𝑦ଶ + 𝑦ଷ ≥ 1
𝑦ଵ, 𝑦ଶ, 𝑦ଷ ∈ {0, 1}

What is the smallest value of
M that doesn’t compromise
the meaning of the model?

• Add a free variable to each equality constraint to measure slack or surplus
• Use indicator variable to designate whether slack/surplus is zero

Logical conditions on equalities – Or

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 41

෍
௜

𝑎௞௜𝑥௜ + 𝑤௞ = 𝑏௞

𝑤௞ ≤ 𝑀 1 − 𝑦௞
𝑤௞ ≥ −𝑀 1 − 𝑦௞

𝑦ଵ + ⋯ + 𝑦௞ ≥ 1
𝑦ଵ, … , 𝑦௞ ∈ {0,1}

෍
௜

𝑎௞௜𝑥௜ = 𝑏௞

Slack

Surplus

At least constraints
• Generalizes the "or" constraint
• Use indicator or big M (if not too big) for the satisfied constraints
• Count the binding constraints via a constraint on indicator variables

Example:
• At least 4 constraints must be satisfied with

𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦௞ ≥ 4

Logical conditions on constraints – At least

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 42

෍
௜

𝑎௞௜𝑥௜ + 𝑤௞ = 𝑏௞

𝑤௞ ≤ 𝑀 1 − 𝑦௞
𝑤௞ ≥ −𝑀 1 − 𝑦௞

𝑦ଵ + ⋯ + 𝑦௞ ≥ 4
𝑦ଵ, … , 𝑦௞ ∈ {0,1}

Indicator General Constraint represents if-then logic

• If 𝑧 = 1 then 𝑥ଵ + 2𝑥ଶ − 𝑥ଷ ≥ 2

• The condition (𝑧 = 1) must be a binary variable (z) and a value (0 or 1)

Logical conditions on constraints – If-then

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 43

addGenConstrIndicator(z, 1, x1+2*x2-x3 >= 2)

Many models have special kind of "or" constraint

𝑥 = 0 ∨ 40 ≤ 𝑥 ≤ 100

• This is a semi-continuous variable
• Semi-continuous variables are common in manufacturing, inventory, power generation, etc.
• Semi-integer variables are of similar form with an added integrality restriction

Semi-continuous variables

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

1. Add the indicator yourself:
40𝑦 ≤ 𝑥 ≤ 100𝑦, 𝑦 ∈ {0,1}

• Good performance but requires explicit upper bound on the semi-continuous variable

2. Let Gurobi handle variables you designate as semi-continuous (or semi-integer)

• practical option when upper bound is large or non-existent

Two techniques for semi-continuous variables

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

x = model.addVar(vtype=GRB.SEMICONT, lb=40, ub=100, name="x")
x = model.addVar(vtype=GRB.SEMIINT, lb=40, ub=100, name="x")

Limit on number of non-zero semi-continuous variables

Easy if you use indicator variables
40𝑦௜ ≤ 𝑥௜ ≤ 100𝑦௜

෍
௜

𝑦௜ ≤ 30

Need to model the logic yourself (instead of using semi-continuous variables), otherwise you
cannot restrict the non-zero semi-variables.

Example

Combined logical constraints

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 46

Want big-M as tight (small) as possible
Example:

𝑥ଵ + 𝑥ଶ ≤ 10 + 𝑀𝑦

if 𝑥ଵ, 𝑥ଶ ≤ 100 then 𝑀 = 190

Presolve will do its best to tighten big-M values.

Tight, constraint-specific big-M values are better than a giant one-size-fits-all big-M
• Too large big-M leads to poor performance and numerical problems
• Pick big-M values specifically for each constraint
• Can look at statistics of presolved model to assess how well Gurobi

reduced the big M coefficients

Selecting big-M values

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 47

What is the smallest value of
M if 𝑥ଵ, 𝑥ଶ ≤ 350?

Want big-M as tight (small) as possible
Presolve will do its best to tighten big-M values.

But what if presolve doesn’t provide any tighter big M values?
 𝑥ଵ + 𝑥ଶ ≤ 𝑀𝑦
 <other constraints involving 𝑥ଵ, 𝑥ଶ>

Selecting big-M values

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 48

𝑥ଵ + 𝑥ଶ ≥ 100000

Feasible: Try again with rhs > 100000
Or solve a subproblem to determine M:

Maximize 𝑥ଵ + 𝑥ଶ
s.t.
<all constraints in the model>

M = optimal subproblem objective value

Infeasible: M < 100000
Try again with rhs < 100000

Or run infeasibility finder; IIS may reveal
group of constraints from which tighter M
can be derived.

New Optimization Based
Bound Tightening in Gurobi
10.0 does this on selected

individual variables

General constraint helper functions specific to gurobipy to simplify construction of constraints:

Integrate general constraints with addConstrs():

Python Modeling Enhancements

Helper Functions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 49

max_(), min_(), abs_(), and_(), or_(), norm()

model.addConstr(x == abs_(y))
model.addConstr(x == or_(y,z,w))

X, Y, Gcons = model.addVars(10), model.addVars(10), {}
for i in X:
Gcons[i] = model.addGenConstrMin(X[i], [Y[i], 10], name="Gc")

X, Y = model.addVars(10), model.addVars(10)
Gcons = model.addConstrs((X[i] == min_(Y[i],10) for i in X), name="Gc")

General non-linear functions (of decision variables) are supported by Gurobi 9.0+
• 𝑒௫, 𝑎௫

• ln 𝑥 , log௔(𝑥)
• sin 𝑥 , cos 𝑥 , tan 𝑥
• 𝑥௔

• 𝑎𝑥ଷ + 𝑏𝑥ଶ + 𝑐𝑥 + 𝑑

• Starting with Gurobi 11.0, these nonlinear functions are supported directly as well as via piecewise
linear approximation.
• Use the FuncNonlinear parameter and attribute to configure direct support

Non-convex quadratic functions are supported directly by Gurobi 9.0+
• Some special cases have been already supported prior to version 9.0

(e.g., products involving at least one binary decision variable)

Non-linear functions

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 50

addGenConstrExp(), addGenConstrExpA()
addGenConstrLog(), addGenConstrLogA()
addGenConstrSin(), addGenConstrCos(), addGenConstrTan()
addGenConstrPow()
addGenConstrPoly()

• Gurobi 11.0 can handle selected univariate, smooth constraints 𝑓(𝑥) = 𝑦
• Trigonometric, power functions, logarithms, exponentials, etc.
• Use them as building blocks for more elaborate functions

Example: Suppose we want to model

𝑓 𝜃 = 1 + 𝜃ଶ + ln 𝜃 + 1 + 𝜃ଶ ≤ 2, 𝜃 ≥ 0
Then we introduce auxiliary variables 𝑢, 𝑣, 𝑤, 𝑧 ≥ 0 and constraints as follows:

u = 1 + 𝜃ଶ, 𝑢 = 𝑣ଶ, 𝑤 = 𝜃 + 𝑣, 𝑧 = ln 𝑤
Then 𝑓 𝜃 ≤ 2 can be represented as 𝑣 + 𝑧 ≤ 2

Elementary, univariate functions

𝑣 𝑤

𝑧

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

Multiple Objectives

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

Real-world optimization problems often have multiple, competing objectives:
• Cost functions/Revenue
• Satisfaction/Target achievement
• Fairness
• KPIs
• Error/Feasibility
• Switching Configurations

Approaches to handling more than one objective function:
• Integration into a single objective function by using a weighted combination of multiple objectives
• Hierarchical approach: solve model for each objective but limit degradation of previous results
• … or a combination of both

Working with multiple objectives

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 53

Easy definition of multiple objectives

Variant 1

Variant 2

Multi-Objective API

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 54

model.setObjectiveN(LinExpr, index, ...)

coef1 = [0, 1, 2, 3, 4]
coef2 = [4, 3, 2, 1, 0]
x = model.addVars(5)

model.setObjectiveN(x.prod(coef1), 0, priority=2, weight=1)
model.setObjectiveN(x.prod(coef2), 1, priority=1, weight=1)

model.setObjectiveN(x[1]+2*x[2]+3*x[3]+4*x[4], 0, priority=2, weight=1)
model.setObjectiveN(4*x[0]+3*x[1]+2*x[2]+x[3], 1, priority=1, weight=1)

Used with
getMultiobjEnv() to

set different
parameters for

different
subproblems

Enhanced termination control for multi-objective optimization

• Allows for fine-grained control of each multi-objective optimization pass
• Algorithmic choices
• Termination criteria

• One optimization pass per objective priority level
• Settings for additional objectives of same priority level are ignored

Note: MIP starts are only used for first priority level objective solve.

Enhanced Multi-Objective control

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 55

model.getMultiobjEnv() env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam(‘TimeLimit’,100)
env1.setParam(‘TimeLimit’,10)

model.optimize()
model.discardMultiobjEnvs()

Example of multiple objectives

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 56

Workforce Scheduling Demo:
• First, minimize cost
• Then make the model “fair”
model.setObjectiveN(totSlack, index=index, priority=2,
 reltol=extra_worker_trade_off, name='TotalSlack')
model.setObjectiveN(max_shift - min_shift, index=index,
 priority=1, name='Fairness’)

Tolerances
Allow deviation from optimality
Gives “room” for finding lower-priority objectives
Could specify absolute instead of relative tolerance

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 58

Summary and Additional Learning

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 58

• Free variables can be expressed as difference of two nonnegative variables
• Big-Ms can pose challenges despite Gurobi’s powerful bound strengthening

• SOSs can help
• IISs of reversed bounds can help
• Optimization Based Bound Tightening can help

• Gurobi parameter (OBBT)for individual variables
• Create your own subproblem for more complex expressions

• Convex models usually are much easier to solve than nonconvex ones
• Gurobi continues to add support for more general constraints, facilitating the

model development process
• Before doing it yourself, check if there’s an API for that

• Gurobipy modeling extensions (e.g. tupledict) enable simpler and faster code for
extraction of subsets, an essential part of model building

Takeaways

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 59

www.gurobi.com/resource/modeling-
examples-using-the-gurobi-python-api-in-

jupyter-notebook/

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 60

Check out our Modeling
Examples in Jupyter
Notebook:

http://www.gurobi.com/resource/modeling-examples-using-the-gurobi-python-api-in-jupyter-notebook/
http://www.gurobi.com/resource/modeling-examples-using-the-gurobi-python-api-in-jupyter-notebook/
http://www.gurobi.com/resource/modeling-examples-using-the-gurobi-python-api-in-jupyter-notebook/

Model Building in Mathematical Programming,
by H.P. Williams

References

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 61

© 2024 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 62

For more information: www.gurobi.com

Thank You

The Decision Intelligence Summit
September 2024 | Vegas

All In!

	Presentation
	Slide 1: Agenda
	Slide 2
	Slide 3

	Python extensions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Features
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

	Multiple objectives
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

